Skip to main content
Log in

Homogeneous catalytic oxidation of alkenes employing mononuclear vanadium complex with hydrogen peroxide

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Homogeneous liquid-phase oxidation of alkenes (allylbenzene, cis-cyclooctene, 4-chlorostyrene, styrene, 2-norbornene, 1-methyl cyclohexene, indene, lemonine, and 1-hexene) were catalyzed by using vanadium complex [VO(hyap)(acac)2] in existence of H2O2. The complex [VO(hyap)(acac)2] was formed as a crystal by the reaction of [VO(acac)2] and 2-hydroxyacetophenone (hyap) in the presence of methanol by refluxing the reaction mixture. Various analytical and spectroscopic techniques, namely FTIR, ESI–MS, UV–Vis, single-crystal XRD, and EPR, were used to analyze and optimize the structure of the complexes.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G. Strukul, Catalytic Oxidations with Hydrogen Peroxide as Oxidant (Kluwer Academic, Dordrecht, 1992)

    Google Scholar 

  2. F.P. Ballistreri, C.M. Gangemi, A. Pappalardo, G.A. Tomaselli, R.M. Toscano, G.T. Sfrazzetto, Int. J. Mol. Sci. 17, 1112 (2016)

    PubMed Central  Google Scholar 

  3. S.H. Kashani, M. Moghadam, S. Tangestaninejad, V. Mirkhani, I.M. Baltork, Catal. Lett. 148, 1110 (2018)

    Google Scholar 

  4. Y. Zhu, Q. Wang, R.G. Cornwall, Y. Shi, Chem. Rev. 114, 8199 (2014)

    CAS  PubMed  Google Scholar 

  5. Y. Shen, P. Jiang, P.T. Wai, Q. Gu, W. Zhang, Catalysts 9, 31 (2019)

    Google Scholar 

  6. K.C. Gupta, A.K. Sutar, Coord. Chem. Rev. 252, 1420 (2008)

    CAS  Google Scholar 

  7. K.C. Gupta, A.K. Sutar, C.C. Lin, Coord. Chem. Rev. 253, 1936 (2009)

    Google Scholar 

  8. K.C. Gupta, A.K. Sutar, J. Mol. Catal. 272, 64 (2007)

    CAS  Google Scholar 

  9. A.G.J. Ligtenbarg, R. Hage, B.L. Feringa, Coord. Chem. Rev. 237, 89 (2003)

    CAS  Google Scholar 

  10. F.V. de Velde, I.W.C.E. Arends, R.A. Sheldon, J. Inorg. BioChem. 80, 81 (2000)

    PubMed  Google Scholar 

  11. D.F. Back, G.M. de Oliveira, D. Roman, M.A. Ballin, R. Kober, P.C. Piquini, Inorg. Chim. Acta 412, 6 (2014)

    CAS  Google Scholar 

  12. H.H. Monfared, R. Bikas, P. Mayer, Inorg. Chim. Acta 363, 2574 (2010)

    CAS  Google Scholar 

  13. M.R. Maurya, Coord. Chem. Rev. 383, 43 (2019)

    CAS  Google Scholar 

  14. M. Sutradhar, L.M.D.R.S. Martins, M.F.C.G. da Silva, A.J.L. Pombeiro, Coord. Chem. Rev. 301, 200 (2015)

    Google Scholar 

  15. M.R. Maurya, C. Haldar, A. Kumar, M.L. Kuznetsov, F. Avecillac, J.C. Pessoa, Dalton Trans. 42, 11941 (2013)

    CAS  PubMed  Google Scholar 

  16. T. Hirao, Coord. Chem. Rev. 237, 1 (2003)

    CAS  Google Scholar 

  17. T. Hirao, Chem. Rev. 97, 2707 (1997)

    CAS  PubMed  Google Scholar 

  18. A.E. Shilov, G.B. Shul’pin, Chem. Rev. 97, 2879 (1997)

    CAS  PubMed  Google Scholar 

  19. B.G. Świerkosz, F. Trifirò, Appl. Catal. A 157, 1 (1997)

    Google Scholar 

  20. A. Butler, M.J. Clague, G.E. Meister, Chem. Rev. 94, 625 (1994)

    CAS  Google Scholar 

  21. U. Schuchardt, M.C. Guerreiro, G.B. Shul’pin, Russ. Chem. Bull. 47, 247 (1998)

    CAS  Google Scholar 

  22. O. Bortolini, F. Di Furia, P. Scrimin, G. Modena, J. Mol. Catal. 7, 59 (1980)

    CAS  Google Scholar 

  23. E.J. Eisenbraun, A.R. Bader, J.W. Polacheck, E. Reif, J. Org. Chem. 28, 2057 (1963)

    CAS  Google Scholar 

  24. R. Neumann, M. Levin-Elad, Appl. Catal. A 122, 85 (1995)

    CAS  Google Scholar 

  25. D. Wei, W. Chuei, G.L. Haller, Catal. Today 51, 501 (1999)

    CAS  Google Scholar 

  26. G. Bellussi, M.S. Rigutto, Stud. Surf. Sci. Catal. 85, 177 (1994)

    CAS  Google Scholar 

  27. A.M. Khenkin, L. Weiner, Y. Wang, R. Neumann, J. Am. Chem. Soc. 123, 8531 (2001)

    CAS  PubMed  Google Scholar 

  28. R.D. Gall, M. Faraj, C.L. Hill, Inorg. Chem. 33, 5015 (1994)

    CAS  Google Scholar 

  29. T. Bunchuay, R. Ketkaew, P. Chotmongkolsap, T. Chutimasakul, J. Kanarat, Y. Tantirungrotechai, J. Tantirungrotechai, Catal. Sci. Technol. 7, 6069 (2017)

    CAS  Google Scholar 

  30. MdM Hossain, S.G. Shyu, Tetrahedron 70, 251 (2014)

    CAS  Google Scholar 

  31. Z.P. Pai, N.V. Selivanova, P.V. Oleneva, P.V. Berdnikova, A.M. Beskopyl’nyi, Catal. Commun. 88, 45–49 (2017)

    CAS  Google Scholar 

  32. A. Maurya, N. Kesharwani, P. Kachhap, V.K. Mishra, N. Chaudhary, C. Haldar, Appl. Organomet. Chem. 33(9), e5094 (2019)

    Google Scholar 

  33. K. Parida, K.G. Mishra, S.K. Dash, Ind. Eng. Chem. Res. 51, 2235 (2012)

    CAS  Google Scholar 

  34. SAGE, Int. J. Toxicol. 25, 11 (2006)

    Google Scholar 

  35. P.J. Hajduk, M. Bures, J. Praestgaard, S.W. Fesik, J. Med. Chem. 43, 3443 (2000)

    CAS  PubMed  Google Scholar 

  36. C. Ballatore, D.M. Huryn, A.B. Smith, ChemMedChem 8, 385 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  37. S. Takizawa, T. Katayama, H. Somei, Y. Asano, T. Yoshida, C. Kameyama, D. Rajesh, K. Onitsuka, T. Suzuki, M. Mikami, H. Yamataka, D. Jayaprakash, H. Sasai, Tetrahedron 64, 3361 (2008)

    CAS  Google Scholar 

  38. M.R. Maurya, R. Tomar, L. Rana, F. Avecilla, Eur. J. Inorg. Chem. 2018, 2952 (2018)

    CAS  Google Scholar 

  39. M.R. Maurya, B. Sarkar, F. Avecilla, I. Correia, Dalton Trans. 45, 17343 (2016)

    CAS  PubMed  Google Scholar 

  40. Á. Kupán, J. Kaizer, G. Speier, M. Giorgi, M. Réglier, F. Pollreisz, J. Inorg. Biochem. 103, 389 (2009)

    PubMed  Google Scholar 

  41. M.R. Maurya, N. Chaudhary, F. Avecilla, P. Adão, J.C. Pessoa, Dalton Trans. 44, 1211 (2015)

    CAS  PubMed  Google Scholar 

  42. M.R. Maurya, N. Chaudhary, F. Avecilla, Polyhedron 67, 436 (2014)

    CAS  Google Scholar 

  43. V.K. Singh, A. Maurya, N. Kesharwani, P. Kachhap, S. Kumari, A.K. Mahato, V.K. Mishra, C. Haldar, J. Coord. Chem. 71(4), 520 (2018)

    CAS  Google Scholar 

  44. P.M. Anarjan, R. Bikas, H.H. Monfared, P.A. Kevych, P. Mayer, J. Mol. Struct. 1131, 258 (2017)

    Google Scholar 

  45. S.S. Amin, K. Cryer, B. Zhang, S.K. Dutta, S.S. Eaton, O.P. Anderson, S.M. Miller, B.A. Reul, S.M. Brichard, D.C. Crans, Inorg. Chem. 39, 406 (2000)

    CAS  PubMed  Google Scholar 

  46. S. Meijers, V. Ponec, E. Finocchio, G. Busca, J. Chem. Soc. Faraday Trans. 91, 1861 (1995)

    CAS  Google Scholar 

  47. J. Zhao, L. Liu, S. Xiang, Q. Liu, H. Chen, Org. Biomol. Chem. 13, 5613 (2015)

    CAS  PubMed  Google Scholar 

  48. G. Romanowski, J. Mol. Catal. A Chem. 368, 137 (2013)

    Google Scholar 

  49. M.R. Maurya, M. Kumar, S. Sikarwar, React. Funct. Polym. 66, 808 (2006)

    CAS  Google Scholar 

  50. M.R. Maurya, A. Kumar, M. Ebel, D. Rehder, Inorg. Chem. 45, 15 (2006)

    Google Scholar 

  51. M.M. Javadi, M. Moghadam, I.M. Baltork, S. Tangestaninejad, V. Mirkhani, J. Iran. Chem. Soc. 12, 477 (2015)

    CAS  Google Scholar 

  52. M. Sedighipoor, A.H. Kianfar, W.A.K. Mahmood, M.H. Azarian, Inorg. Chim. Acta 457, 116 (2017)

    CAS  Google Scholar 

  53. M.C. Hsiao, S.T. Liu, Catal. Lett. 139, 61 (2010)

    CAS  Google Scholar 

  54. N. Mizuno, K. Kamata, Coord. Chem. Rev. 255, 2358 (2011)

    CAS  Google Scholar 

  55. N. Mizuno, Y. Nakagawa, K. Yamaguchi, J. Mol. Catal. A Chem. 251, 286 (2006)

    CAS  Google Scholar 

  56. G. Grivani, A.D. Khalaji, V. Tahmasebi, K. Gotoh, H. Ishida, Polyhedron 31, 265 (2012)

    CAS  Google Scholar 

  57. P. Paula, A. Ghosh, S. Chatterjee, A. Bera, S.M. Alamb, SkM Islam, Inorg. Chim. Acta 492, 198 (2019)

    Google Scholar 

  58. C. Weerakkody, S. Biswas, W. Song, J. He, N. Wasalathanthri, S. Dissanayake, D.A. Kriz, B. Dutta, S.L. Suib, Appl. Catal. B Environ. 22(1), 681 (2018)

    Google Scholar 

  59. A. Nodzewska, A. Wadolowska, M. Watkinson, Coord. Chem. Rev. 382, 181 (2019)

    CAS  Google Scholar 

  60. R.A. Rowe, M.M. Jones, Inorg. Synth. 5, 113 (1957)

    CAS  Google Scholar 

  61. G.M. Sheldrick, SHELXS-97, Program of Crystal Structure Solution (University of Göttingen, Germany, 1997)

  62. C. Arunagiri, A.G. Anitha, A. Subashini, S. Selvakumar, N.K. Lokanath, Chem. Data Collect. 17, 169 (2018)

    Google Scholar 

  63. G.M. Sheldrick, SHELX2017, Programs for Crystal Structure Determination (Universität Göttingen, Germany, 2017)

Download references

Acknowledgements

A. M. thanks Dr. C. Haldar, department of chemistry, IIT (ISM), Dhanbad, for providing instrumental facility. The author acknowledges IIT (ISM), Dhanbad, Jharkhand, for fellowship. The author acknowledges the central research facility, IIT (ISM), Dhanbad, for providing single-crystal XRD analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Maurya.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 282 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurya, A. Homogeneous catalytic oxidation of alkenes employing mononuclear vanadium complex with hydrogen peroxide. J IRAN CHEM SOC 17, 3261–3269 (2020). https://doi.org/10.1007/s13738-020-01988-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-020-01988-x

Keywords

Navigation