Skip to main content
Log in

Application of central composite design for electrochemical oxidation of reactive dye on Ti/MWCNT electrode

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In the present study, degradation of Reactive Orange 7 dye was investigated using a new designed titanium electrode, in which a plate of Ti was coated with multi-walled carbon nanotubes (Ti/MWCNT) via electrophoretic deposition technique. A series of characterizations including field scanning electron microscopy, X-ray diffraction, cyclic voltammetry, scanning electrochemical impedance spectroscopy and chronoamperometric analysis were performed to investigate MWCNT impact on the microstructure and electrochemical properties of Ti electrode. Furthermore, the effect of main operating parameters as independent variables (current density, electrolyte concentration, initial pH, and electrolysis time) on color removal efficiency as response variable were investigated and optimized by central composite design under response surface methodology. The maximum color removal efficiency of 89.1% and chemical oxygen demand removal efficiency of 55% were obtained, under the optimum condition. These results indicate that the presence of MWCNT on the Ti substrate noticeably promoted the electrochemical activity and the electrodes’ property for treatment of dye in aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Q. Qiao, S. Singh, S.-L. Lo, Y. Li, J. Jin, L. Wang, Electrochemical oxidation of acid orange 7 dye with Ce, Nd, and Co-modified PbO2 electrodes: preparation, characterization, optimization, and mineralization. J. Taiwan Inst. Chem. Eng. 84, 110–122 (2018)

    CAS  Google Scholar 

  2. S. Porhemmat, M. Ghaedi, A.R. Rezvani, M.H.A. Azqhandi, A.A. Bazrafshan, Nanocomposites: synthesis, characterization and its application to removal azo dyes using ultrasonic assisted method: modeling and optimization. Ultrason. Sonochem. 38, 530–543 (2017)

    CAS  PubMed  Google Scholar 

  3. A.H. Ltaïef, S. Sabatino, F. Proietto, S. Ammar, A. Gadri, A. Galia, O. Scialdone, Electrochemical treatment of aqueous solutions of organic pollutants by electro-Fenton with natural heterogeneous catalysts under pressure using Ti/IrO2–Ta2O5 or BDD anodes. Chemosphere 202, 111–118 (2018)

    PubMed  Google Scholar 

  4. R. FaridaYunus, Y.-M. Zheng, K.N. Nanayakkara, J.P. Chen, Electrochemical removal of rhodamine 6G by using RuO2 coated Ti DSA. Ind. Eng. Chem. Res. 48, 7466–7473 (2009)

    CAS  Google Scholar 

  5. J. Luo, Y. Wang, D. Cao, K. Xiao, T. Guo, X. Zhao, Enhanced photoelectrocatalytic degradation of 2,4-dichlorophenol by TiO2/Ru-IrO2 bifacial electrode. Chem. Eng. J. 343, 69–77 (2018)

    CAS  Google Scholar 

  6. K. Gurung, M.C. Ncibi, M. Shestakova, M. Sillanpää, Removal of carbamazepine from MBR effluent by electrochemical oxidation (EO) using a Ti/Ta2O5–SnO2 electrode. Appl. Catal. B Environ. 221, 329–338 (2018)

    CAS  Google Scholar 

  7. C.M. Dominguez, N. Oturan, A. Romero, A. Santos, M.A. Oturan, Lindane degradation by electrooxidation process: effect of electrode materials on oxidation and mineralization kinetics. Water Res. 135, 220–230 (2018)

    CAS  PubMed  Google Scholar 

  8. S. Dbira, N. Bensalah, P. Cañizares, M.A. Rodrigo, A. Bedoui, The electrolytic treatment of synthetic urine using DSA electrodes. J. Electroanal. Chem. 744, 62–68 (2015)

    CAS  Google Scholar 

  9. Q. Zhang, W. Huang, J.-M. Hong, B.-Y. Chen, Deciphering acetaminophen electrical catalytic degradation using single-form S doped graphene/Pt/TiO2. Chem. Eng. J. 343, 662–675 (2018)

    CAS  Google Scholar 

  10. W. Yang, M. Zhou, L. Liang, Highly efficient in situ metal-free electrochemical advanced oxidation process using graphite felt modified with N-doped graphene. Chem. Eng. J. 338, 700–708 (2018)

    CAS  Google Scholar 

  11. C. Trellu, Y. Pechaud, N. Oturan, E. Mousset, D. Huguenot, E.D. Van Hullebusch, G. Esposito, M.A. Oturan, Comparative study on the removal of humic acids from drinking water by anodic oxidation and electro-Fenton processes: mineralization efficiency and modelling. Appl. Catal. B Environ. 194, 32–41 (2016)

    CAS  Google Scholar 

  12. J.R. Steter, E. Brillas, I. Sirés, On the selection of the anode material for the electrochemical removal of methylparaben from different aqueous media. Electrochim. Acta 222, 1464–1474 (2016)

    CAS  Google Scholar 

  13. F.N. Chianeh, J. Basiri Parsa, Decolorization of azo dye CI acid red 33 from aqueous solutions by anodic oxidation on MWCNTs/Ti electrodes. Desalin. Water Treat. 57, 20574–20581 (2016)

    Google Scholar 

  14. C.B. Jacobs, M.J. Peairs, B.J. Venton, Carbon nanotube based electrochemical sensors for biomolecules. Anal. Chim. Acta 662, 105–127 (2010)

    CAS  PubMed  Google Scholar 

  15. A.R. Boccaccini, J. Cho, J.A. Roether, B.J. Thomas, E.J. Minay, M.S. Shaffer, Electrophoretic deposition of carbon nanotubes. Carbon 44, 3149–3160 (2006)

    CAS  Google Scholar 

  16. A. Clifford, X. Pang, I. Zhitomirsky, Biomimetically modified chitosan for electrophoretic deposition of composites. Colloids Surf. A Physicochem. Eng. Asp. 544, 28–34 (2018)

    CAS  Google Scholar 

  17. M. Farrokhi-Rad, Effect of morphology on the electrophoretic deposition of hydroxyapatite nanoparticles. J. Alloys Compd. 741, 211–222 (2018)

    CAS  Google Scholar 

  18. Y. Ma, J. Han, M. Wang, X. Chen, S. Jia, Electrophoretic deposition of graphene-based materials: a review of materials and their applications. J. Materiomics 4, 108–120 (2018)

    Google Scholar 

  19. A. Hajizadeh, M. Aliofkhazraei, M. Hasanpoor, E. Mohammadi, Comparison of electrophoretic deposition kinetics of graphene oxide nanosheets in organic and aqueous solutions. Ceram. Int. 44, 10951–10960 (2018)

    CAS  Google Scholar 

  20. A. Khataee, M. Zarei, M. Fathinia, M.K. Jafari, Photocatalytic degradation of an anthraquinone dye on immobilized TiO2 nanoparticles in a rectangular reactor: destruction pathway and response surface approach. Desalination 268, 126–133 (2011)

    CAS  Google Scholar 

  21. J. Cho, K. Konopka, K. Rożniatowski, E. García-Lecina, M.S. Shaffer, A.R. Boccaccini, Characterisation of carbon nanotube films deposited by electrophoretic deposition. Carbon 47, 58–67 (2009)

    CAS  Google Scholar 

  22. L. Feng, K. Li, Z. Si, H. Li, Q. Song, Y. Shan, S. Wen, Microstructure and thermal shock resistance of SiC/CNT–SiC double-layer coating for carbon/carbon composites. Ceram. Int. 40, 13683–13689 (2014)

    CAS  Google Scholar 

  23. H. Xu, X. Quan, Z. Xiao, L. Chen, Effect of anodes decoration with metal and metal oxides nanoparticles on pharmaceutically active compounds removal and power generation in microbial fuel cells. Chem. Eng. J. 335, 539–547 (2018)

    CAS  Google Scholar 

  24. T. Belin, F. Epron, Characterization methods of carbon nanotubes: a review. Mater. Sci. Eng. B 119, 105–118 (2005)

    Google Scholar 

  25. L. Guangzhong, L. Gang, W. Hui, X. Changshu, Z. Jiandong, L. Qian, T. Huiping, Preparation of Sb doped nano SnO2/porous Ti electrode and its degradation of methylene orange. Rare Met. Mater. Eng. 44, 1326–1330 (2015)

    Google Scholar 

  26. Y. Duan, Y. Chen, Q. Wen, T. Duan, Fabrication of dense spherical and rhombic Ti/Sb–SnO2 electrodes with enhanced electrochemical activity by colloidal electrodeposition. J. Electroanal. Chem. 768, 81–88 (2016)

    CAS  Google Scholar 

  27. Y. Wang, C. Shen, M. Zhang, B.-T. Zhang, Y.-G. Yu, The electrochemical degradation of ciprofloxacin using a SnO2-Sb/Ti anode: influencing factors, reaction pathways and energy demand. Chem. Eng. J. 296, 79–89 (2016)

    CAS  Google Scholar 

  28. X. Li, D. Shao, H. Xu, W. Lv, W. Yan, Fabrication of a stable Ti/TiOxHy/Sb–SnO2 anode for aniline degradation in different electrolytes. Chem. Eng. J. 285, 1–10 (2016)

    CAS  Google Scholar 

  29. H. Pang, J. Lu, J. Chen, C. Huang, B. Liu, X. Zhang, Preparation of SnO2-CNTs supported Pt catalysts and their electrocatalytic properties for ethanol oxidation. Electrochim. Acta 54, 2610–2615 (2009)

    CAS  Google Scholar 

  30. S.P. Kim, M.Y. Choi, H.C. Choi, Characterization and photocatalytic performance of SnO2–CNT nanocomposites. Appl. Surf. Sci. 357, 302–308 (2015)

    CAS  Google Scholar 

  31. X. Zhang, H. Zhu, Z. Guo, Y. Wei, F. Wang, Design and preparation of CNT@SnO2 core–shell composites with thin shell and its application for ethanol oxidation. Int. J. Hydrog. Energy 35, 8841–8847 (2010)

    CAS  Google Scholar 

  32. E. Nariyan, M. Sillanpää, C. Wolkersdorfer, Uranium removal from pyhäsalmi/finland mine water by batch electrocoagulation and optimization with the response surface methodology. Sep. Purif. Technol. 193, 386–397 (2018)

    CAS  Google Scholar 

  33. F.N. Chianeh, J.B. Parsa, Electrochemical degradation of metronidazole from aqueous solutions using stainless steel anode coated with SnO2 nanoparticles: experimental design. J. Taiwan Inst. Chem. Eng. 59, 424–432 (2016)

    CAS  Google Scholar 

  34. M. Sheydaei, S. Aber, A. Khataee, Degradation of amoxicillin in aqueous solution using nanolepidocrocite chips/H2O2/UV: optimization and kinetics studies. J. Ind. Eng. Chem. 20, 1772–1778 (2014)

    CAS  Google Scholar 

  35. A. Aghaeinejad-Meybodi, A. Ebadi, S. Shafiei, A. Khataee, M. Rostampour, Modeling and optimization of antidepressant drug fluoxetine removal in aqueous media by ozone/H2O2 process: comparison of central composite design and artificial neural network approaches. J. Taiwan Inst. Chem. Eng. 48, 40–48 (2015)

    CAS  Google Scholar 

  36. F.N. Chianeh, J.B. Parsa, Degradation of azo dye from aqueous solutions using nano-SnO2/Ti electrode prepared by electrophoretic deposition method: experimental design. Chem. Eng. Res. Des. 92, 2740–2748 (2014)

    Google Scholar 

  37. P. Asaithambi, A.R.A. Aziz, W.M.A.B.W. Daud, Integrated ozone—electrocoagulation process for the removal of pollutant from industrial effluent: optimization through response surface methodology. Chem. Eng. Process. 105, 92–102 (2016)

    CAS  Google Scholar 

  38. A. Khataee, S. Gohari, M. Fathinia, Modification of magnetite ore as heterogeneous nanocatalyst for degradation of three textile dyes: simultaneous determination using MCR-ALS, process optimization and intermediate identification. J. Taiwan Inst. Chem. Eng. 65, 172–184 (2016)

    CAS  Google Scholar 

  39. Z. Shaykhi, A. Zinatizadeh, Statistical modeling of photocatalytic degradation of synthetic amoxicillin wastewater (SAW) in an immobilized TiO2 photocatalytic reactor using response surface methodology (RSM). J. Taiwan Inst. Chem. Eng. 45, 1717–1726 (2014)

    CAS  Google Scholar 

  40. M. Ahmad, E. Ahmed, Z. Hong, W. Ahmed, A. Elhissi, N. Khalid, Photocatalytic, sonocatalytic and sonophotocatalytic degradation of Rhodamine B using ZnO/CNTs composites photocatalysts. Ultrason. Sonochem. 21, 761–773 (2014)

    CAS  PubMed  Google Scholar 

  41. K. Dai, G. Dawson, S. Yang, Z. Chen, L. Lu, Large scale preparing carbon nanotube/zinc oxide hybrid and its application for highly reusable photocatalyst. Chem. Eng. J. 191, 571–578 (2012)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors like to thank Semnan University, Iran, for financial and any other support. The authors deem it necessary to appreciate Dr. S. Maryam Sajjadi who generously provided us invaluable theoretical information in the preparation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farideh Nabizadeh Chianeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nabizadeh Chianeh, F., Avestan, M.S. Application of central composite design for electrochemical oxidation of reactive dye on Ti/MWCNT electrode. J IRAN CHEM SOC 17, 1073–1085 (2020). https://doi.org/10.1007/s13738-019-01834-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-019-01834-9

Keywords

Navigation