Skip to main content
Log in

A comparative study of tetra-n-butylammonium bromide potentiometric selective screen printed, carbon paste and carbon nanotube modified graphite sensors

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

A comparative study between in situ screen printed (SPE), carbon paste (CPE) and carbon nanotube modified graphite (CNTME) electrodes was established for the determination of tetra-n-butylammonium bromide (TBAB) in pure and spiked tap water samples. Different experimental conditions as ion-pairing agent type and content, carbon nanotube content, plasticizer, response and soaking time, pH and, temperature effects were studied. The in situ SPEs commingling 6 mg sodium tetraphenylborate (NaTPB, electrode I), 6 mg phosphotungstic acid (PTA, electrode II), 6 mg phosphomolybdic acid (PMA, electrode III), and 12 mg ammonium reineckate (RN, electrode IV) ion-pairing agents displayed the best Nernstian slope values of 60.71 ± 1.94, 59.75 ± 0.38, 59.73 ± 0.76 and 59.90 ± 0.51 mV decade−1 over a perceptible spacious concentration range from 1.0 × 10−5 to 1.0 × 10−2 mol L−1, respectively. While it was observed that the in situ CPE containing 9 mg of RN ion-pairing agent (electrode V) presenting Nernstian slope of 60.38 ± 0.16 mV decade−1 over concentration range from 1.0 × 10−5 to 1.0 × 10−2 mol L−1 and in order to improve the efficiency of electrode V, the paste was modified with different amounts of carbon nanotube and the best content was found to be 100 mg of carbon nanotube (electrode VI) with Nernstian slope of 59.90 ± 0.45 mV decade−1 over a broader concentration range from 1.0 × 10−6 to 1.0 × 10−2 mol L−1. The fabricated sensors exhibited fast response time with a relatively low isothermal coefficient. The analytical performance of the SPEs, CPE, and CNTME compared with respect to distinguishing power for TBAB relative to a number of potential interfering cations were investigated. The obtained results were satisfactory with excellent detection and quantification limit, recovery, and relative standard deviation percentages values which indicate the precision and accuracy of the established sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Kantevari, M.V. Chary, A.P.R. Das, V.N.V. Srinavasu, N. Lingaiah, Catal. Commun. 9, 1575 (2008)

    Article  CAS  Google Scholar 

  2. M.V. Chary, N.C. Keerthysri, S.V.N. Vapallapati, N. Lingaiah, S. Kantevari, Catal. Commun. 9, 2013 (2008)

    Article  CAS  Google Scholar 

  3. S.A. Siddiqui, U.C. Narkhede, S.S. Palimkar, T. Daniel, R.J. Loholi, K.V. Srinivasan, Tetrahedron 61, 3539 (2005)

    Article  CAS  Google Scholar 

  4. B.C. Ranu, A. Das, S.J. Samanta, J. Chem. Soc. Perkin Trans. 1, 1520 (2002)

    Article  CAS  Google Scholar 

  5. B.C. Ranu, S.S. Dey, A. Hajra, Tetrahedron 59, 2417 (2003)

    Article  CAS  Google Scholar 

  6. A. Ezabadi, R. Nazarian, M. Gholami, Orient. J. Chem. 31, 1559 (2015)

    Article  CAS  Google Scholar 

  7. J.M. Khurana, S. Kumar, Tetrahedron Lett. 50, 4125 (2009)

    Article  CAS  Google Scholar 

  8. G.D. Chukin, B.L. Khusid, G.V. Vasilenko, G.B. Belan, Chem. Technol. Fuels Oils 22, 234 (1986)

    Article  Google Scholar 

  9. A. Shishov, P. Terno, L. Moskvin, A. Bulatov, Talanta 206, 120209 (2020)

    Article  CAS  PubMed  Google Scholar 

  10. R. Li, X. Li, Z. Chen, Y. Zhang, C. Xu, Z. Xia, Energies 11, 399 (2018)

    Article  CAS  Google Scholar 

  11. P. Babu, W.I. Chin, R. Kumar, P. Linga, Ind. Eng. Chem. Res. 53, 4878 (2014)

    Article  CAS  Google Scholar 

  12. T.V. Rodionova, V.Y. Komarov, G.V. Villevald, T.D. Karpova, N.V. Kuratieva, A.Y. Manakov, J. Phys. Chem. B 117, 10677 (2013)

    Article  CAS  PubMed  Google Scholar 

  13. P. Babu, W.I. Chin, R. Kumar, P. Linga, Energy Procedia 61, 1780 (2014)

    Article  CAS  Google Scholar 

  14. https://echa.europa.eu/brief-profile/-/briefprofile/100.015.182. Accessed 5 Nov 2019

  15. A.F. Lopez, M.T. Peralta de Ariza, O.A. Orio, J. High Resol. Chromatogr. 12, 503 (1989)

    Article  CAS  Google Scholar 

  16. N.H. Subramanian, P. Manigandan, R.G. Jeevan, G. Radhakrishnan, J. Chromatogr. Sci. 47, 540 (2009)

    Article  CAS  PubMed  Google Scholar 

  17. L. Ji-hua, L. Hui-yi, F. Fang, Z. Tie-ling, Chin. J. Pharm. Anal. 28, 443 (2008)

    Google Scholar 

  18. G. Manasa, R.J. Mascarenhas, A.K. Satpati, B.M. Basavaraja, S. Kumar, Colloids Surf. B Biointerfaces 170, 144 (2018)

    Article  CAS  PubMed  Google Scholar 

  19. K. Vytřas, I. Svancara, R. Metelka, J. Serb. Chem. Soc. 74, 1021 (2009)

    Article  CAS  Google Scholar 

  20. O.J. D’Souza, R.J. Mascarenhas, A.K. Satpati, B.M. Basavaraja, Sci. China Chem. 62, 262 (2019)

    Article  CAS  Google Scholar 

  21. N.P. Shetti, S.J. Malode, D.S. Nayak, S.D. Bukkitgar, G.B. Bagihalli, R.M. Kulkarni, K.R. Reddy, J. Phys. Chem. Solids 137, 109210 (2020)

    Article  CAS  Google Scholar 

  22. S.D. Bukkitgar, N.P. Shetti, R.M. Kulkarni, M. Wasim, Mater. Today Proc. 5, 21458 (2018)

    Article  CAS  Google Scholar 

  23. E.Y. Frag, M.E. Mohamed, E.M. Fahim, Biosen. Bioelectron. 118, 122 (2018)

    Article  CAS  Google Scholar 

  24. G.G. Mohamed, E.Y.Z. Frag, M. Zayed, M.M. Omar, S.E.A. Elashery, New J. Chem. 41, 15612 (2017)

    Article  CAS  Google Scholar 

  25. O.J. D’Souza, R.J. Mascarenhas, A.K. Satpati, V. Mane, Z. Mekhalif, Electroanalysis 29, 1794 (2017)

    Article  CAS  Google Scholar 

  26. G. Manasa, A.K. Bhakta, Z. Mekhalif, R.J. Mascarenhas, Electroanalysis 31, 1363 (2019)

    Article  CAS  Google Scholar 

  27. E.Y.Z. Frag, M.A. Zayed, M.M. Omar, S.E.A. Elashary, G.G. Mohmed, Int. J. Electrochem. Sci. 7, 650 (2012)

    CAS  Google Scholar 

  28. M.D. Rubianes, G.A. Rivas, Electrochem. Commun. 5, 689 (2003)

    Article  CAS  Google Scholar 

  29. S. Suresh, A.K. Gupta, V.K. Rao, O. Kumar, R. Vijayaraghavan, Talanta 81, 703 (2010)

    Article  CAS  PubMed  Google Scholar 

  30. S. Tajik, M.A. Taher, H. Beitollahi, Sens. Actuators B: Chem. 188, 923 (2013)

    Article  CAS  Google Scholar 

  31. E.Y.Z. Frag, G.G. Mohamed, F. Nour-Elddin, M.E. Mohamed, Analyst 136, 332 (2011)

    Article  CAS  PubMed  Google Scholar 

  32. E.Y. Frag, M.E.B. Mohamed, G.G. Mohamed, Y. Samy, Appl. Organomet. Chem. 33, 5107 (2019)

    Article  CAS  Google Scholar 

  33. M.D. Tutulea-Anastasiu, D. Wilson, M. Valle, C.M. Schreiner, I. Cretescu, Sensors 13, 4367 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. G.G. Mohamed, F.A. Nour El-Dien, E.Y.Z. Frag, M.E. Mohamed, J. Pharm. Anal. 3, 367 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. S. Peper, C. Gonczy, Int. J. Electrochem. 2011, 276896 (2010)

    Google Scholar 

  36. A. Ceresa, T. Sokalski, E. Pretsch, J. Electroanal. Chem. 501, 70 (2001)

    Article  CAS  Google Scholar 

  37. M. Huang, Y. Ding, X. Li, ACS Comb. Sci. 16, 128 (2014)

    Article  CAS  PubMed  Google Scholar 

  38. C. Maccà, Anal. Chim. Acta 512, 183 (2004)

    Article  CAS  Google Scholar 

  39. A.M. Othman, N.M.H. Rizk, M.S. El-Shahawi, Anal. Chim. Acta 515, 303 (2004)

    Article  CAS  Google Scholar 

  40. S.S.M. Hassan, E.M. Elnemma, W.H. Mahmoud, A.H.K. Mohammed, J. Appl. Electrochem. 36, 139 (2006)

    Article  CAS  Google Scholar 

  41. L.I. Antropov, Theoretical Electrochemistry (Mir Publisher, Moscow, 1977), p. 595

    Google Scholar 

  42. H.M.N.H. Irving, H. Zettler, G. Baudin, H. Freiser, G.G. Guilbault, O. Menis, N.M. Rice, A.J.B. Robertson, A.C. Docherty, W. Fischer, H. Kaiser, G.F. Kirkbright, O. Samuelson, G. Svehla, G. Tölg, T.S. West, H.A. Tawfik, Recommendations for nomenclature of ion-selective electrodes. Pure Appl. Chem. 48, 127 (1976)

    Article  Google Scholar 

  43. E. Linder, K. Toth, E. Pungor, Dynamic Characteristics of Ion Selective Electrodes (CRC Press, Boca Raton, FL, 1988), p. 146

    Google Scholar 

  44. S.M. Ghoreishi, M. Behpour, M. Nabi, Sens. Actuators B: Chem. 113, 963 (2006)

    Article  CAS  Google Scholar 

  45. ICH Harmonized Tripartite Guideline: Validation of Analytical Procedures, Text and Methodology, Q2(R1) (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally E. A. Elashery.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 762 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elashery, S.E.A., Frag, E.Y. & Mousa, M.G. A comparative study of tetra-n-butylammonium bromide potentiometric selective screen printed, carbon paste and carbon nanotube modified graphite sensors. J IRAN CHEM SOC 17, 911–921 (2020). https://doi.org/10.1007/s13738-019-01825-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-019-01825-w

Keywords

Navigation