Skip to main content

Advertisement

Log in

Sol–gel approach for the growth of vertically aligned 3D-TiO2 nanorod arrays as an efficient photoanode for high-performance dye-sensitized solar cells

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In this study, a facile, low cost, and scalable sol–gel method has been proposed for the coating of ultra-thin layer of TiO2 on FTO substrate as a seed layer for the growth of 3D-TiO2 nanorod (3D-TiO2-NR) arrays on FTO. Then, the two-step hydrothermal process including nanorod growth and the chemical etching treatment was proceeded for the fabrication of FTO/3D-TiO2-NR photoanodes. The thickness of the deposited TiO2 in FTO/TiO2-sg samples was measured with small-angle X-ray scattering technique, and it was obtained to be 21.3 nm. FE-SEM and TEM techniques were used for the morphological characterization of 3D-TiO2-NR, and it was obtained that the tightly adhered film of vertically aligned 3D-TiO2-NR with two-layer nanostructuring is formed with a cubic base and a nanorods head. Finally, DSSCs with iodine-based and cobalt(II/III) tris(2,2′-bipyridine) complex-based electrolytes with two different photoanodes including 3D-TiO2-NR and TiO2-NP were assembled and their photovoltaic characteristics were investigated. For [Co(bpy)3]2+/3+ shuttle-based DSSC, the obtained power conversion efficiency (η) was about 3.5% with Jsc of 9.36 mA cm−2 in 3D-TiO2-NR-based DSSC, while η of TiO2-NP-based DSSC was about 1.4%. The results showed that employing 3D-TiO2-NR-based photoanode in DSSCs with bulky electron shuttles remarkably improves the photovoltaic characteristics of DSSCs. Electrochemical impedance spectroscopic studies also showed the lower charge transfer resistances for DSSCs with nanorod-based photoanode building blocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Abrari, M. Ahmadi, M. Ghanaatshoar, H.R. Moazami, S.S.H. Davarani, J. Alloys Compd. 784, 1036 (2019)

    Article  CAS  Google Scholar 

  2. W. Liang, K. Fan, Y. Luan, Z. Tan, M. Al-Mamun, Y. Wang, P. Liu, H. Zhao, J. Alloys Compd. 772, 80 (2019)

    Article  CAS  Google Scholar 

  3. Y. Rui, Y. Li, Q. Zhang, H. Wang, CrystEngComm 15, 1651 (2013)

    Article  CAS  Google Scholar 

  4. G. Liu, J. Xu, K. Wang, Mater. Today Energy 10, 368 (2018)

    Article  Google Scholar 

  5. O. Moradlou, Z. Rabiei, A. Banazadeh, J. Warzywoda, M. Zirak, Appl. Catal. B: Environ. 227, 178 (2018)

    Article  CAS  Google Scholar 

  6. Z.J. Chermahini, A.N. Chermahini, H.A. Dabbagh, B. Rezaei, N. Irannejad, J. Iran. Chem. Soc. 14, 1549–1556 (2017)

    Article  CAS  Google Scholar 

  7. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 110, 6595 (2010)

    Article  CAS  Google Scholar 

  8. X.L. Zhang, W. Huang, A. Gu, W. Xiang, F. Huang, Z.X. Guo, Y.-B. Cheng, L. Spiccia, J. Mater. Chem. C 5, 4875 (2017)

    Article  CAS  Google Scholar 

  9. P. Naik, R. Su, D.D. Babu, A. El-Shafei, A.V. Adhikari, J. Iran. Chem. Soc. 14, 2457–2466 (2017)

    Article  CAS  Google Scholar 

  10. M.A. Hossain, S. Oh, S. Lim, J. Ind. Eng. Chem. 51, 122 (2017)

    Article  CAS  Google Scholar 

  11. B. Wang, J. Wan, Q. Liu, J. Zhang, H. Wang, RSC Adv. 5, 82968 (2015)

    Article  CAS  Google Scholar 

  12. K. Zhao, X. Zhang, M. Wang, W. Zhang, X. Li, H. Wang, L. Li, J. Alloys Compd. 786, 50–55 (2019)

    Article  CAS  Google Scholar 

  13. H. Wang, B. Wang, J. Yu, Y. Hu, C. Xia, J. Zhang, R. Liu, Sci. Rep. 5, 9305 (2015)

    Article  CAS  Google Scholar 

  14. Y.-Y. Li, J.-G. Wang, H.-H. Sun, B. Wei, ACS Appl. Mater. Interfaces 10, 11580 (2018)

    Article  CAS  Google Scholar 

  15. T.S. Girisun, C. Jeganathan, N. Pavithra, S. Anandan, Nanotechnology 29, 085605 (2018)

    Article  CAS  Google Scholar 

  16. L.-L. Li, C.-Y. Tsai, H.-P. Wu, C.-C. Chen, E.W.-G. Diau, J. Mater. Chem. 20, 2753 (2010)

    Article  CAS  Google Scholar 

  17. B. Rezaei, I. Mohammadi, A.A. Ensafi, M.M. Momeni, Electrochim. Acta 247, 410 (2017)

    Article  CAS  Google Scholar 

  18. Q. Sun, Y. Hong, T. Zang, Q. Liu, L. Yu, L. Dong, J. Electrochem. Soc. 165, H3069 (2018)

    Article  CAS  Google Scholar 

  19. S. So, A. Kriesch, U. Peschel, P. Schmuki, J. Mater. Chem. A 3, 12603 (2015)

    Article  Google Scholar 

  20. N. Naseri, M. Yousefi, O. Moradlou, A. Moshfegh, Phys. Chem. Chem. Phys. 13, 4239 (2011)

    Article  CAS  Google Scholar 

  21. H. Wang, Y. Bai, H. Zhang, Z. Zhang, J. Li, L. Guo, J. Phys. Chem. C 114, 16451 (2010)

    Article  CAS  Google Scholar 

  22. J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, G. Luo, Chem. Rev. 115, 2136 (2015)

    Article  CAS  Google Scholar 

  23. A. Colombo, C. Dragonetti, M. Magni, D. Roberto, F. Demartin, S. Caramori, C.A. Bignozzi, ACS Appl. Mater. Interfaces 6, 13945 (2014)

    Article  CAS  Google Scholar 

  24. L. Xu, C. Xin, C. Li, W. Wu, J. Hua, W. Zhu, Sol. Energy 169, 450 (2018)

    Article  CAS  Google Scholar 

  25. E.J. Crossland, N. Noel, V. Sivaram, T. Leijtens, J.A. Alexander-Webber, H.J. Snaith, Nature 495, 215 (2013)

    Article  CAS  Google Scholar 

  26. C. Dong, W. Xiang, F. Huang, D. Fu, W. Huang, U. Bach, Y.-B. Cheng, X. Li, L. Spiccia, Nanoscale 6, 3704 (2014)

    Article  CAS  Google Scholar 

  27. W. Yang, P. Yang, Q. Tang, Mater. Lett. 180, 228 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Research Council of Alzahra University for financial support (Grant No. 1397). A special thanks go to Dr. Simon Welzmiller and Dr. Sascha Correll (STOE Company, Germany) for their small-angle X-ray scattering (SAXS) measurements and valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omran Moradlou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 206 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khakpour, Z., Tavassoli, M. & Moradlou, O. Sol–gel approach for the growth of vertically aligned 3D-TiO2 nanorod arrays as an efficient photoanode for high-performance dye-sensitized solar cells. J IRAN CHEM SOC 17, 881–891 (2020). https://doi.org/10.1007/s13738-019-01821-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-019-01821-0

Keywords

Navigation