Skip to main content
Log in

The immobilized copper species on nickel ferrite (NiFe2O4@Cu): a magnetically reusable nanocatalyst for one-pot and quick reductive acetylation of nitroarenes to N-arylacetamides

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In this study, a green protocol for synthesis of N-arylacetamides was introduced. Magnetically, nanoparticles of the immobilized copper species on nickel ferrite, NiFe2O4@Cu, were synthesized and then characterized using SEM, EDX, XRD, VSM, ICP-OES, BET and XPS analyses. The XPS analysis approved that the immobilized copper species on NiFe2O4 only contain Cu(0) and its oxide form as CuO. The prepared nanocomposite system represented a perfect catalytic activity toward one-pot and quick reductive acetylation of various nitroarenes to the corresponding N-arylacetamides. All reactions were carried out in a mixture of H2O–EtOH (1.5–0.5) within 2–10 min using the combination system of NaBH4 and Ac2O in a one-pot approach and via a two-step procedure. The utilized Cu nanocomposite was magnetically separated from the reaction mixture and reused for 5 consecutive cycles without the significant loss of its catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P. Rajput, A. Sharma, J. Pharmacol. Med. Chem. 2, 22 (2018)

    Google Scholar 

  2. A. Ojeda-Porras, D. Gamba-Sánchez, J. Org. Chem. 81, 11548 (2016)

    Article  CAS  PubMed  Google Scholar 

  3. C.G. Wermuth, P. Ciapetti, B. Giethlen, P. Bazzini, in Comprehensive Medicinal Chemistry II, vol. 2, ed. by J.B. Taylor, D.J. Triggle (Elsevier, Amsterdam, 2007), pp. 649–711

    Chapter  Google Scholar 

  4. A.E. Wahba, J. Peng, M.T. Hamann, Tetrahedron Lett. 50, 3901 (2009)

    Article  CAS  Google Scholar 

  5. J. Yue-shun, L. Qing, W. Xiao-Hong, W. Hai-Long, L. Xiao-Too, J. Shanghai Univ. (Eng.) 10, 277 (2006)

    Article  Google Scholar 

  6. D.C. Owsley, J.J. Bloomfield, Synthesis 1977, 118 (1977)

    Article  Google Scholar 

  7. K.Y. Lee, J.M. Kim, J.N. Kim, Bull. Korean Chem. Soc. 23, 1359 (2002)

    Article  CAS  Google Scholar 

  8. T. Ho, J. Org. Chem. 42, 3755 (1977)

    Article  CAS  Google Scholar 

  9. R.N. Baruah, Indian J. Chem. 39B, 300 (2000)

    CAS  Google Scholar 

  10. Y. Watanabe, Y. Tsuji, T. Kondo, R. Takeuchi, J. Org. Chem. 49, 4451 (1984)

    Article  CAS  Google Scholar 

  11. E.M. Nahmed, G. Jenner, Tetrahedron Lett. 32, 4917 (1991)

    Article  CAS  Google Scholar 

  12. K. Basu, S. Chakraborty, C. Saha, A.K. Sarkar, IOSR J. Appl. Chem. 7, 30 (2014)

    Article  CAS  Google Scholar 

  13. M.L. Kantam, R.S. Reddy, K. Srinivas, R. Chakravarti, B. Sreedhar, F. Figueras, C.V. Reddy, J. Mol. Catal. A: Chem. 355, 96 (2012)

    Article  CAS  Google Scholar 

  14. Z. Shokri, B. Zeynizadeh, S.A. Hosseini, J. Colloid Interface Sci. 485, 99 (2017)

    Article  CAS  PubMed  Google Scholar 

  15. M. Gilanizadeh, B. Zeynizadeh, J. Iran. Chem. Soc. 15, 2821 (2018)

    Article  Google Scholar 

  16. B. Zeynizadeh, Z. Shokri, M. Hasanpour Galehban, Appl. Organometal. Chem. 33, e4771 (2019)

    Article  CAS  Google Scholar 

  17. D. Astruc, Nanoparticles and Catalysis, Chapter 1 (Wiley-VCH, Weinheim, 2008)

    Google Scholar 

  18. M. Larramendy, S. Soloneski, Green Nanotechnology: Overview and Further Prospects (IntechOpen, London, 2016)

    Book  Google Scholar 

  19. D. Wang, D. Astruc, Chem. Soc. Rev. 46, 816 (2017)

    Article  CAS  PubMed  Google Scholar 

  20. X. Liu, X. Wen, R. Hoffmann, ACS Catal. 8, 3365 (2018)

    Article  CAS  Google Scholar 

  21. N.K. Ojha, G.V. Zyryanov, A. Majee, V.N. Charushin, O.N. Chupakhin, S. Santra, Coordin. Chem. Rev. 353, 1 (2017)

    CAS  Google Scholar 

  22. M.B. Gawande, A. Goswami, F.-X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, R.S. Varma, Chem. Rev. 116, 3722 (2016)

    Article  CAS  PubMed  Google Scholar 

  23. B. Zeynizadeh, M. Zabihzadeh, Z. Shokri, J. Iran. Chem. Soc. 13, 1487 (2016)

    Article  CAS  Google Scholar 

  24. A. Alexakis, N. Krause, S. Woodward, Copper-Catalyzed Asymmetric Synthesis (Wiley-VCH, Weinheim, 2014)

    Book  Google Scholar 

  25. F. Alonso, Y. Moglie, G. Radivoy, M. Yus, Org. Biomol. Chem. 9, 6385 (2011)

    Article  CAS  PubMed  Google Scholar 

  26. J.M. Welter, Copper: Better Properties for Innovative Products (Wiley-VCH, Weinheim, 2007)

    Google Scholar 

  27. R.L. Kimber, E.A. Lewis, F. Parmeggiani, K. Smith, H. Bagshaw, T. Starborg, N. Joshi, A.I. Figueroa, G. van der Laan, G. Cibin, D. Gianolio, S.J. Haigh, R.A.D. Pattrick, N.J. Turner, J.R. Lloyd, Small 14, 1703145 (2018)

    Article  CAS  Google Scholar 

  28. S. Jain, N. Nagar, V. Devra, Adv. Appl. Sci. Res. 6, 171 (2015)

    CAS  Google Scholar 

  29. J. Dupont, J.D. Scholten, Chem. Soc. Rev. 39, 1780 (2010)

    Article  CAS  PubMed  Google Scholar 

  30. F. Maillard, S. Schreier, M. Hanzlik, E.R. Savinova, S. Weinkauf, U. Stimming, Phys. Chem. Chem. Phys. 7, 385 (2005)

    Article  CAS  Google Scholar 

  31. M.M. Khakzad Siuki, M. Bakavoli, H. Eshghi, Appl. Organomet. Chem. 33, e4774 (2019)

    Article  CAS  Google Scholar 

  32. B. Zeynizadeha, S. Rahmani, RSC Adv. 9, 8002 (2019)

    Article  Google Scholar 

  33. A.R. Sardarian, F. Mohammadi, M. Esmaeilpour, Res. Chem. Intermed. 45, 1437 (2019)

    Article  CAS  Google Scholar 

  34. T. Pasinszki, M. Krebsz, G.G. Lajgut, T. Kocsis, L. Kótai, S. Kauthale, S. Tekalec, R. Pawar, New J. Chem. 42, 1092 (2018)

    Article  CAS  Google Scholar 

  35. M. Ghavidel, S.Y.S. Beheshtiha, M.M. Heravi, Int. J. Nano Dimens. 9, 408 (2018)

    CAS  Google Scholar 

  36. F. Taghavi, M. Gholizadeh, A.S. Saljooghia, M. Ramezani, Med. Chem. Commun. 8, 1953 (2017)

    Article  CAS  Google Scholar 

  37. M. Tang, S. Zhang, X. Li, X. Pang, H. Qiu, Mater. Chem. Phys. 148, 639 (2014)

    Article  CAS  Google Scholar 

  38. N. Kalarikkal, S. Thomas, O. Koshy, Nanomaterials: Physical, Chemical, and Biological Applications, Chapter 14, 1st edn. (Apple Academic Press, New York, 2018)

    Book  Google Scholar 

  39. T. Tatarchuk, M. Bououdina, J.J. Vijaya, L.J. Kennedy, Spinel ferrite nanoparticles: synthesis, crystal structure, properties, and perspective applications, in NANO 2016: Nanophysics, Nanomaterials, Interface Studies, and Applications, vol. 195, Springer Proceedings in Physics, ed. by O. Fesenko, L. Yatsenko (Springer, Berlin, 2017), pp. 305–325

    Chapter  Google Scholar 

  40. N. Sanpo, C. Wen, C.C. Berndt, J. Wang, Antibacterial properties of spinel ferrite nanoparticles, in Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education, vol. 1, ed. by A. Méndez-Vilas (Formatex Research Center, Torremolinos, 2013), pp. 239–250

    Google Scholar 

  41. D.S. Mathew, R.S. Juang, Chem. Eng. J. 129, 51 (2007)

    Article  CAS  Google Scholar 

  42. B. Gillot, Eur. Phys. J. Appl. Phys. 4, 243 (1998)

    Article  CAS  Google Scholar 

  43. P. Jing, J. Du, J. Wang, W. Lan, L. Pan, J. Li, J. Wei, D. Cao, X. Zhang, C. Zhao, Q. Liu, Nanoscale 7, 14738 (2015)

    Article  CAS  PubMed  Google Scholar 

  44. A.S.A. Bakr, Y.M. Moustafa, E.A. Motawea, M.M. Yehia, M.M.H. Khalil, J. Environ. Chem. Eng. 3, 1486 (2015)

    Article  CAS  Google Scholar 

  45. A. Ren, C. Liu, Y. Hong, W. Shi, S. Lin, P. Li, Chem. Eng. J. 258, 301 (2014)

    Article  CAS  Google Scholar 

  46. P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, C. Muthamizhchelvan, J. Alloys Compd. 563, 6 (2013)

    Article  CAS  Google Scholar 

  47. https://scholar.google.com/citations?user=sT1HzlIAAAAJ&hl=en. Accessed 5 May 2019

  48. B. Zeynizadeh, S. Karami, Polyhedron 166, 196 (2019)

    Article  CAS  Google Scholar 

  49. S. Rahmani, B. Zeynizadeh, Res. Chem. Intermed. 45, 1227 (2019)

    Article  CAS  Google Scholar 

  50. L. Sadighnia, B. Zeynizadeh, S. Karami, M. Abdollahi, J. Chin. Chem. Soc. 66, 535 (2019)

    Article  CAS  Google Scholar 

  51. S. Karami, B. Zeynizadeh, Carbohydr. Polym. 211, 298 (2019)

    Article  CAS  PubMed  Google Scholar 

  52. Z. Shokri, B. Zeynizadeh, S.A. Hosseini, B. Azizi, J. Iran. Chem. Soc. 14, 101 (2017)

    Article  CAS  Google Scholar 

  53. H. Mousavi, B. Zeynizadeh, R. Younesi, M. Esmati, Aust. J. Chem. 71, 595 (2018)

    Article  CAS  Google Scholar 

  54. S. Karami, B. Zeynizadeh, Z. Shokri, Cellulose 25, 3295 (2018)

    Article  CAS  Google Scholar 

  55. S. Ramachandran Rao, Diamagnetism of copper. in Indian Academy of Sciences, Proceedings—Section A, vol. 2 (1935), p. 249. (https://opsias.ias.ac.in/article/fulltext/seca/002/03/0249-0259)

  56. S. Ramachandran Rao, Nature 136, 436 (1935)

    Article  Google Scholar 

  57. W. Li, Q. Deng, G. Fang, Y. Chen, J. Zhan, S. Wang, J. Mater. Chem. B 1, 1947 (2013)

    Article  CAS  PubMed  Google Scholar 

  58. https://xpssimplified.com/elements/boron.php. Accessed 5 May 2019

  59. http://www.alfa-chemistry.com/cas_134-98-5.htm. Accessed 5 May 2019

  60. https://aksci.com/item_detail.php?cat=W4313. Accessed 5 May 2019

  61. http://www.alfa-chemistry.com/cas_10268-78-7.htm. Accessed 5 May 2019

  62. https://www.chemicalbook.com/ChemicalProductProperty_EN_CB6460349.htm. Accessed 5 May 2019

  63. http://www.chemicalbook.com/ChemicalProductProperty_EN_CB6358510.htm. Accessed 5 May 2019

  64. https://www.chemsrc.com/en/cas/16375-94-3_757814.html. Accessed 5 May 2019

  65. Z. Sun, L. Liu, D.Z. Jia, W. Pan, Sensor. Actuat. B: Chem. 125, 144 (2007)

    Article  CAS  Google Scholar 

  66. Z. Zhang, Y. Liu, G. Yao, G. Zu, Y. Hao, Int. J. Appl. Ceram. Technol. 10, 142 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully appreciated the financial support of this work by the research council of Urmia University. The helpful comments of Dr. Seyed Ali Hosseini and Dr. Ali Hassanzadeh were also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behzad Zeynizadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeynizadeh, B., Shokri, Z. & Mohammadzadeh, I. The immobilized copper species on nickel ferrite (NiFe2O4@Cu): a magnetically reusable nanocatalyst for one-pot and quick reductive acetylation of nitroarenes to N-arylacetamides. J IRAN CHEM SOC 17, 859–870 (2020). https://doi.org/10.1007/s13738-019-01818-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-019-01818-9

Keywords

Navigation