Skip to main content
Log in

TiO2 nanoparticles and ionic liquid platform for selective electrochemical determination of indacaterol in pharmaceutical formulations and human fluids: application to content uniformity

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The present work described the first voltammetric sensor for the estimation of indacaterol (IND) in the presence of its co-formulated drug glycopyrronium bromide. Indacaterol (IND) is used to treat chronic obstructive pulmonary disease, which is a major cause of morbidity and mortality worldwide so the quick analysis of minor concentrations of this drug is very important. Titanium(IV) oxide nanoparticles (TiO2-NPs) and the ionic liquid (IL) n-hexyl-3-methylimidazolium hexafluorophosphate were used for the new formulated carbon paste electrode. Other factors, such as the pH of the solution, the TiO2-NP concentration and the scan rate, were also optimized using cyclic voltammetry. Scanning electron microscopy, chronoamperometry and electrochemical impedance spectroscopy were utilized for determination of the character of the electrochemical sensor. Moreover, the electrochemical redox mechanism of IND at the proposed sensor was studied. Under the optimum conditions, the proposed TiO2-NP–IL–MCPE showed good linearity over a concentration range of 2.00 nM–200.00 mM using square wave voltammetry. The LOD was found to be 500 pM, indicating excellent sensitivity. Satisfactory recoveries of IND from pharmaceutical formulations, content uniformity tests and human plasma and urine were achieved, clearly revealing that the new sensor can be used in the clinical analysis of IND and in quality control laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.E. Frampton, QVA149 (indacaterol/glycopyrronium fixed-dose combination): a review of its use in patients with chronic obstructive pulmonary disease. Drugs 74, 465 (2014)

    Article  Google Scholar 

  2. M.J. O’Neil, The Merck index: an encyclopedia of chemicals, drugs, and biologicals, 15th edn. (RSC Publishing, Cambridge, 2013)

    Google Scholar 

  3. Y.A. Salem, D.T. Sherbiny, D.R. Wasseef, S.M. Ashry, HPLC determination of indacaterol maleate in pharmaceutical preparations adopting ultraviolet and fluorescence detection. Int. J. Pharm Sci. Res. 6(2), 1324–1332 (2015)

    CAS  Google Scholar 

  4. S. Zayed, F. Belal, Rapid simultaneous determination of indacaterol maleate and glycopyrronium bromide in inhaler capsules using a validated stability-indicating monolithic LC method. Chem. Cent. J. 11, 1–36 (2017)

    Article  Google Scholar 

  5. C. Emotte, O. Heudi, F. Deglave, A. Bonvie, L. Masson, F. Picard, O. Kretz, Validation of an on-line solid-phase extraction method coupled to liquid chromatography–tandem mass spectrometry detection for the determination of Indacaterol in human serum. J. Chromatogr. B Biomed. Sci. Appl. 1(895), 1–9 (2012)

    Google Scholar 

  6. W.G. Ammari, Z. Al-Qadhi, M. Khalil, R. Tayyem, S. Qammaz, G. Oriquat, H. Chrystyn, Indacaterol determination in human urine: validation of a liquid–liquid extraction and liquid chromatography–tandem mass spectrometry analytical method. J. Aerosol Med. Pulm. Drug Deliv. 28(3), 202–210 (2015)

    Article  CAS  Google Scholar 

  7. S.M. El-Ashry, D.R. El-Wasseef, D.T. El-Sherbiny, Y.A. Salem, Spectrophotometric and spectrofluorimetric determination of indacaterol maleate in pure form and pharmaceutical preparations: application to content uniformity. J. Lumin. 30(6), 891–897 (2015)

    Article  CAS  Google Scholar 

  8. Y.A. Salem, D.T. El-Sherbiny, D.R. El-Wasseef, S.M. El-Ashry, Spectroscopic study on indacaterol maleate: analytical applications for quality control of capsules. Int. J. Pharm Sci. Res. 6, 592–605 (2015)

    CAS  Google Scholar 

  9. M.F.A. Ghany, L.A. Hussein, N. Magdy, H.Z. Yamani, Simultaneous spectrophotometric determination of indacaterol and glycopyrronium in a newly approved pharmaceutical formulation using different signal processing techniques of ratio spectra. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 157(15), 251–257 (2016)

    Article  Google Scholar 

  10. N.J. Ronkainen, H.B. Halsall, W.R. Heineman, Electrochemical biosensors. Chem. Soc. Rev. 39(5), 1747–1763 (2010)

    Article  CAS  Google Scholar 

  11. N.N. Salama, H.E. Zaazaa, S.M. Azab, S.A. Atty, N.M. El-Kosy, M.Y. Salem, A novel cesium modified carbon paste electrode for rapid selective determination of ropinirole in presence of co-administered and interference substances. Sens. Actuators B Chem. 240, 1291–1301 (2017)

    Article  CAS  Google Scholar 

  12. S.A. Atty, G.A. Sedik, F.A. Morsy, D.M. Naguib, H.E. Zaazaa, A novel sensor aluminum silicate modified carbon paste electrode for determination of anti-depressant dothiepin HCl in pharmaceutical formulation and biological fluids. Microchem. J. 1(148), 725–734 (2019)

    Article  Google Scholar 

  13. R.C. Alkire, Y. Gogotsi, P. Simon, Nanostructured Materials in Electrochemistry (Wiley, New York, 2008)

    Google Scholar 

  14. C. Cai, J. Chen, Direct electron transfer of glucose oxidase promoted by carbon nanotubes. Anal. Biochem. 332, 75–83 (2004)

    Article  CAS  Google Scholar 

  15. N.N. Salama, H.E. Zaazaa, S.M. Azab, S.A. Atty, N.M. El-Kosy, M.Y. Salem, Utility of gold nanoparticles/silica modified electrode for rapid selective determination of mebeverine in micellar medium: comparative discussion and application in human serum. Ionics 22(6), 957–966 (2016)

    Article  CAS  Google Scholar 

  16. M. Mazloum-Ardakani, H. Beitollahi, M.K. Amini, F. Mirkhalaf, M. Abdollahi-Alibeik, New strategy for simultaneous and selective voltammetric determination of norepinephrine, acetaminophen and folic acid using ZrO2 nanoparticles-modified carbon paste electrode. Sens. Actuators B 151(1), 243–294 (2010)

    Article  CAS  Google Scholar 

  17. M.A. Mohamed, S.A. Atty, H.A. Merey, T.A. Fattah, C.W. Foster, C.E. Banks, Titanium nanoparticles (TiO2)/graphene oxide nanosheets (GO): an electrochemical sensing platform for the sensitive and simultaneous determination of benzocaine in the presence of antipyrine. Analyst 142(19), 3674–3679 (2017)

    Article  CAS  Google Scholar 

  18. M. Beytur, F. Kardaş, O. Akyıldırım, A. Özkan, B. Bankoğlu, H. Yüksek, M.L. Yola, N. Atar, A highly selective and sensitive voltammetric sensor with molecularly imprinted polymer based silver@gold nanoparticles/ionic liquid modified glassy carbon electrode for determination of ceftizoxime. J. Mol. Liq. 251, 212–217 (2018)

    Article  CAS  Google Scholar 

  19. S. Mert, B. Bankoğlu, A. Özkan, N. Atar, M.L. Yola, Electrochemical sensing of ractopamine by carbon nitride nanotubes/ionic liquid nanohybrid in presence of other β-agonists. J. Mol. Liq. 254, 8–11 (2018)

    Article  CAS  Google Scholar 

  20. S. Salmanpour, A. Sadrnia, F. Karimi, N. Majani, M.L. Yola, V.K. Gupta, NiO nanoparticle decorated on single-wall carbon nanotubes and 1-butyl-4-methylpyridinium tetrafluoroborate for sensitive raloxifene sensor. J. Mol. Liq. 254, 255–259 (2018)

    Article  CAS  Google Scholar 

  21. H. Medetalibeyoğlu, S. Manap, Ö.A. Yokuş, M. Beytur, F. Kardaş, O. Akyıldırım, V. Özkan, H. Yüksek, M.L. Yola, N. Atar, Fabrication of Pt/Pd nanoparticles/polyoxometalate/ionic liquid nanohybrid for electrocatalytic oxidation of methanol. J. Electrochem. Soc. 165(5), F338–F341 (2018)

    Article  Google Scholar 

  22. M.L. Yola, C. Göde, N. Atar, Determination of rutin by CoFe2O4 nanoparticles ionic liquid nanocomposite as a voltammetric sensor. J. Mol. Liq. 246, 350–353 (2017)

    Article  CAS  Google Scholar 

  23. United States Pharmacopoeial Convention, United States Pharmacopoeia, USP 35 NF 25 Inc., USA 905, Rockville. MD, (2013)

  24. R.G. Compton, C.E. Banks, Understanding Voltammetry (World Scientific, Singapore, 2011)

    Book  Google Scholar 

  25. A.A. Ensafi, H. Bahrami, B. Rezaei, H. Karimi-Maleh, Application of ionic liquid–TiO2 nanoparticle modified carbon paste electrode for the voltammetric determination of benserazide in biological samples. Mater. Sci. Eng. C 33(2), 831–835 (2013)

    Article  CAS  Google Scholar 

  26. B. Nigović, S. Jurić, A. Mornar, I. Malenica, Electrochemical studies of ropinirole, an anti-Parkinson’s disease drug. J. Chem. Sci. 125(5), 1197–1205 (2013)

    Article  Google Scholar 

  27. D.K. Gosser, Cyclic Voltammetry, Simulation and Analysis of Reaction Mechanism (Wiley-VCH, New York, 1993)

    Google Scholar 

  28. E. Laviron, L. Roullier, C.A. Degrand, A multilayer model for the study of space distributed redox modified electrodes: part II. Theory and application of linear potential sweep voltammetry for a simple reaction. J. Electroanal. Chem. Interfacial Electrochem. 112(1), 11–23 (1980)

    Article  CAS  Google Scholar 

  29. J. Brade, L.R. Faulkner, J. Leddy, C.G. Zoski, Electrochemical Methods: Fundamentals and Applications, vol. 5 (Wiley, New York, 1980)

    Google Scholar 

  30. ICH Q2R1, Validation of Analytical Procedures, Proceedings of the International Conference on Harmonization, Geneva, (2005)

  31. M. Kagan, J. Dain, L. Peng, C. Reynolds, Metabolism and pharmacokinetics of indacaterol in humans. Drug Metab. Pharmacokinet. 40(9), 1712–1722 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shimaa A. Atty.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atty, S.A., Ghany, M.F.A., Hussein, L.A. et al. TiO2 nanoparticles and ionic liquid platform for selective electrochemical determination of indacaterol in pharmaceutical formulations and human fluids: application to content uniformity. J IRAN CHEM SOC 17, 383–395 (2020). https://doi.org/10.1007/s13738-019-01778-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-019-01778-0

Keywords

Navigation