Skip to main content
Log in

Newly selective electrochemical sensors for trace-level determination of Al(III) ions in drainage water, spiked tap water and pharmaceutical preparation samples

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In this work, two newly sensitive and selective Al(III)-modified carbon paste electrodes (MCPEs) were developed based on diphenylcarbazone (DPC) modifier mixed with tricresyl phosphate plasticizer and either graphite powder (electrode I) or graphite powder mixed with graphene (electrode II). The potentiometric performance characteristics of the two electrodes were scrutinized and discussed. The proposed sensors showed a high electrochemical response in the linear concentration range of 1.0 × 10−6 to 1.0 × 10−2 mol L−1 with a good Nernstian slopes of 20.12 ± 0.30 mV decade−1 and 20.63 ± 0.66 mV decade−1 and limits of detection of 9.0 × 10−7 and 8.5 × 10−7 mol L−1 for electrode (I) and electrode (II), respectively. Both electrodes showed a fast response time and reasonable thermal stability. The potentiometric response of the DPC-based electrodes was independent on the pH of the tested solutions in ranges of 2.5–5 and 2.5–5.5 for electrode (I) and electrode (II), respectively. The two electrodes can be also used in partially non-aqueous medium containing up to 20% (v/v) acetone or methanol with no significant changes in the working concentration ranges or the slopes. The proposed electrodes showed fairly good discriminating ability toward Al(III) ions in comparison with many other metal ions. The electrodes were applied successfully for Al(III) ions determination in drainage water, spiked tap water and pharmaceutical preparation samples. Furthermore, the electrode surfaces were characterized using energy-dispersive X-ray (EDX) and scanning electron microscopic (SEM) as surface characterization techniques and Fourier Transform Infrared (FT-IR) technique to confirm the interaction between Al(III) and DPC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Sharma, M.S. Hundal, A. Walia, V. Vanita, G. Hundal, Org. Biomol. Chem. 12, 4445 (2014)

    CAS  PubMed  Google Scholar 

  2. D. Maity, T. Govindaraju, Chem. Commun. 46, 4499 (2010)

    CAS  Google Scholar 

  3. M.I. Yousefm, A.M. El-Morsy, M.S. Hassan, Toxicology 215, 97 (2005)

    Google Scholar 

  4. G. Berthon, Coordin Chem Rev 228, 319 (2002)

    CAS  Google Scholar 

  5. Q. Diao, P. Ma, L. Lv, T. Li, Y. Sun, X. Wang, D. Song, Sens. Actuators B Chem 229, 138 (2016)

    CAS  Google Scholar 

  6. Y. Fu, X.-J. Jiang, Y.-Y. Zhu, B.-J. Zhou, S.-Q. Zang, M.-S. Tang, H.-Y. Zhang, T.C. Mak, Dalton T 43, 12624 (2014)

    CAS  Google Scholar 

  7. A.R. Troiano, Metallogr. Microstruct. Anal. 5, 557 (2016)

    Google Scholar 

  8. V. Henley, The Pergamon Materials Engineering Practice Series (Elsevier, Masterdam, 2013)

    Google Scholar 

  9. M.J. Hull, J.L. Abraham, Hum. Pathol. 33, 819 (2002)

    PubMed  Google Scholar 

  10. P.J. Jederlinic, J.L. Abraham, A. Churg, J. Himmelstein, G. Epler, E. Gaensler, Am. Rev. Respir. Dis. 142, 1179 (1990)

    CAS  PubMed  Google Scholar 

  11. A. Al-Masalkhi, S. Walton, J. Ky Med. Assoc. 92, 59 (1994)

    CAS  PubMed  Google Scholar 

  12. P. Tomme, A. Boraston, B. McLean, J. Kormos, A.L. Creagh, K. Sturch, N.R. Gilkes, C.A. Haynes, R.A.J. Warren, D.G. Kilburn, J Chromatogr B Biomed 715, 283 (1998)

    CAS  Google Scholar 

  13. A.I. Bush, J Alzheimer’s Dis 33, S277 (2013)

    Google Scholar 

  14. B.R. Roberts, T.M. Ryan, A.I. Bush, C.L. Masters, J.A. Duce, J. Neurochem. 120, 149 (2012)

    CAS  PubMed  Google Scholar 

  15. C. Johansson, J I Brew. 100, 255 (1994)

    Google Scholar 

  16. K. Kaur, V.K. Bhardwaj, N. Kaur, N. Singh, Inorg. Chem. Commun. 26, 31 (2012)

    CAS  Google Scholar 

  17. V.K. Gupta, S.K. Shoora, L.K. Kumawat, A.K. Jain, Sens. Actuators B Chem. 209, 15 (2015)

    CAS  Google Scholar 

  18. L. Fan, T.-R. Li, B.-D. Wang, Z.-Y. Yang, C.-J. Liu, Spectrochim Acta A 118, 760 (2014)

    CAS  Google Scholar 

  19. Z. Li, Q. Hu, C. Li, J. Dou, J. Cao, W. Chen, Q. Zhu, Tetrahedron Lett. 55, 1258 (2014)

    CAS  Google Scholar 

  20. G. Albendın, M. Manuel-Vez, C. Moreno, M. Garcıa-Vargas, Talanta 60, 425 (2003)

    PubMed  Google Scholar 

  21. S. Ražić, A. Onjia, S. Đogo, L. Slavković, A. Popović, Talanta 67, 233 (2005)

    PubMed  Google Scholar 

  22. H. Abdolmohammad-Zadeh, G. Sadeghi, Talanta 81, 778 (2010)

    CAS  PubMed  Google Scholar 

  23. E.K. Selvi, U. Şahin, S. Şahan, IJPR 16, 1030 (2017)

    CAS  PubMed  Google Scholar 

  24. Y.-Z. Tang, X. Chen, X.-J. Yang, R.-F. Shen, X.-D. Yang, C.-Z. Xu, IEEE Sens. J. 13, 3270 (2013)

    CAS  Google Scholar 

  25. T.A. Ali, G.G. Mohamed, M. Omar, N.M. Hanafy, J. Ind. Eng. Chem. 47, 102 (2017)

    CAS  Google Scholar 

  26. A. Afkhami, F. Soltani-Felehgari, T. Madrakian, H. Ghaedi, Biosens. Bioelectron. 51, 379 (2014)

    CAS  PubMed  Google Scholar 

  27. X. Yu, Y. Chen, L. Chang, L. Zhou, F. Tang, X. Wu, Sensors Actuat B-Chem 186, 648 (2013)

    CAS  Google Scholar 

  28. A.L. Balbo, V.C. Dall’Orto, S. Sobral, I. Rezzano, Syn React Inorg Met 31, 2717 (1998)

    Google Scholar 

  29. S.D. Thomas, D.E. Davey, D.E. Mulcahy, C.W. Chow, Electroanal 18, 2257 (2006)

    CAS  Google Scholar 

  30. T.A.A.E. Azzam, M. Hegazy, A. El-Farargy, A.A. Abd-elaal, J. Ind. Eng. Chem. 20, 3320 (2014)

    Google Scholar 

  31. C.-C. Chueh, K. Yao, H.-L. Yip, C.-Y. Chang, Y.-X. Xu, K.-S. Chen, C.-Z. Li, P. Liu, F. Huang, Y. Chen, Energ Environ Sci 6, 3241 (2013)

    CAS  Google Scholar 

  32. M.N.E.-D. Abbas, Anal. Sci. 19, 229 (2003)

    CAS  PubMed  Google Scholar 

  33. M.K. Amini, J.H. Khorasani, S.S. Khaloo, S. Tangestaninejad, Anal. Biochem. 320, 32 (2003)

    CAS  PubMed  Google Scholar 

  34. M.H. Mashhadizadeh, S. Ramezani, M.K. Rofouei, Mater. Sci. Eng., C 47, 273 (2015)

    CAS  Google Scholar 

  35. I. Švancara, K. Schachl, Chem. Listy 93, 490 (1999)

    Google Scholar 

  36. Y. Umezawa, K. Umezawa, H. Sato, Pure Appl. Chem. 67, 507 (1995)

    Google Scholar 

  37. R. Buck, S. Rondinini, A. Covington, F. Baucke, C. Brett, M. Camoes, M. Milton, T. Mussini, R. Naumann, K. Pratt, Pure Appl. Chem. 74, 2169 (2002)

    CAS  Google Scholar 

  38. A. Afkhami, A. Shirzadmehr, T. Madrakian, H. Bagheri, Talanta 131, 548 (2015)

    CAS  PubMed  Google Scholar 

  39. I. Švancara, K. Vytřas, K. Kalcher, A. Walcarius, J. Wang, Electroanal 21, 7 (2009)

    Google Scholar 

  40. A.A. Pérez, L.P. Marı́n, J.C. Quintana, M. Yazdani-Pedram, Sensors Actuators B Chem 89, 262 (2003)

    Google Scholar 

  41. W. Zhihua, L. Xiaole, Y. Jianming, Q. Yaxin, L. Xiaoquan, Electrochim. Acta 58, 750 (2011)

    Google Scholar 

  42. T. Atta-Ur-Rahman, Nuclear magnetic resonance: basic principles (Springer, Berlin, 2012)

    Google Scholar 

  43. J.O.M. Bockris, S.U. Khan, Quantum Electrochem (Springer, Berlin, 1979)

    Google Scholar 

  44. V.V. Cosofret, M. Erdösy, E. Lindner, T.A. Johnson, R.P. Buck, W.J. Kao, M.R. Neuman, J.M. Anderson, Anal. Lett. 27, 3039 (1994)

    CAS  Google Scholar 

  45. P. Hubert, J. Nguyen-Huu, B. Boulanger, E. Chapuzet, P. Chiap, N. Cohen, P. Compagnon, W. Dewé, M. Feinberg, M. Lallier, STP Pharm. Prat. 13, 101 (2003)

    Google Scholar 

  46. M. Thompson, S.L. Ellison, R. Wood, Pure Appl. Chem. 74, 835 (2002)

    CAS  Google Scholar 

  47. P. Hubert, P. Chiap, J. Crommen, B. Boulanger, E. Chapuzet, N. Mercier, S. Bervoas-Martin, P. Chevalier, D. Grandjean, P. Lagorce, Anal. Chim. Acta 391, 135 (1999)

    CAS  Google Scholar 

  48. A.G. González, M.Á. Herrador, TrAC Trends Anal. Chem. 26, 227 (2007)

    Google Scholar 

  49. S. Mitra, Sample preparation techniques in analytical chemistry (Wiley, New York, 2004)

    Google Scholar 

  50. M.E. Mohamed, Russ. J. Electrochem. 52, 754 (2016)

    CAS  Google Scholar 

  51. M.H. Mashhadizadeh, R.P. Talemi, Anal. Chim. Acta 692, 109 (2011)

    CAS  PubMed  Google Scholar 

  52. M. Gholivand, F. Ahmadi, E. Rafiee, Electroanal 18, 1620 (2006)

    CAS  Google Scholar 

  53. M. Shamsipur, S. Ershad, A. Yari, H. Sharghi, A.R. Salimi, Anal. Sci. 20, 301 (2004)

    CAS  PubMed  Google Scholar 

  54. A. Abbaspour, A. Esmaeilbeig, A. Jarrahpour, B. Khajeh, R. Kia, Talanta 58, 397 (2002)

    CAS  PubMed  Google Scholar 

  55. R.F. Aglan, G. Mohamed, H. Mohamed, J Pharm Res 5, 4748 (2012)

    CAS  Google Scholar 

  56. L. Evsevleeva, L. Bykova, V.Y. Badenikov, J. Anal. Chem. 60, 866 (2005)

    CAS  Google Scholar 

  57. Y. Li, Y. Chai, R. Yuan, W. Liang, L. Zhang, G. Ye, J. Anal. Chem. 63, 1090 (2008)

    CAS  Google Scholar 

  58. H. Yao, S. Wang, X. Ma, L. Ren, F. Yan, Int. J. Electrochem. Sci. 9, 2158 (2014)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwa El badry Mohamed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El badry Mohamed, M., El-Taib Heakal, F. & Soliman, M.M. Newly selective electrochemical sensors for trace-level determination of Al(III) ions in drainage water, spiked tap water and pharmaceutical preparation samples. J IRAN CHEM SOC 16, 2795–2807 (2019). https://doi.org/10.1007/s13738-019-01740-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-019-01740-0

Keywords

Navigation