Skip to main content
Log in

Electrochemical study of Cu2O/CuO composite coating produced by annealing and electrochemical methods

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The electrochemical behavior of a copper oxide electrode produced by annealing and electrochemical methods was studied in an acetonitrile solvent by means of the cyclic voltammetry method. The presence of different peaks of oxidation and reduction produced by repeating the potential scans, numerous variations in the current, and shifts of peak potentials in consecutive cycles have been justified. Voltammograms proved that various oxidation species can be produced in solid-deposited forms of Cu2Os and CuOs and dissolved forms of Cu(II)sol and Cu(I)sol ions. The experimental results indicated that higher amounts of Cu2Os than CuOs can be produced in the process of copper electrode annealing. Also, the nature of copper species is responsible for different peak currents in the cyclic voltammograms, characterized by UV–Vis and XRD spectrometric methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. Papadimitropoulos, N. Vourdas, V.E. Vamvakas, D. Davazoglou, Thin Solid Films 515, 2428 (2006)

    CAS  Google Scholar 

  2. A.K. Mukhopadhyay, A. Chakraborty, A. Chatterjee, S.K. Lahiri, Thin Solid Films 209, 92 (1992)

    CAS  Google Scholar 

  3. X. Jiang, T. Herricks, Y. Xia, Nano Lett. 2, 1333 (2002)

    CAS  Google Scholar 

  4. J. Klunker, W. Schäfer, J. Electroanal. Chem. 466, 107 (1999)

    CAS  Google Scholar 

  5. S.E. Allen, R.R. Walvoord, R. Padilla-Salinas, M.C. Kozlowski, Chem. Rev. 113, 6234 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  6. D.B. Rorabacher, R.R. Schroeder, Electrochemistry of Copper (Wiley-VCH Verlag GmbH & Co. KGaA, 2007)

  7. A.E. Rakhshani, Solid-State Electron. 29, 7 (1986)

    CAS  Google Scholar 

  8. D. Ren, Y. Deng, A.D. Handoko, C.S. Chen, S. Malkhandi, B.S. Yeo, ACS Catal. 5, 2814 (2015)

    CAS  Google Scholar 

  9. K.H.V. Reddy, V.P. Reddy, J. Shankar, B. Madhav, B.A. Kumar, Y. Nageswar, Tetrahedron Lett. 52, 2679 (2011)

    CAS  Google Scholar 

  10. M. Gupta, J. Iran. Chem. Soc. 13, 231 (2016)

    CAS  Google Scholar 

  11. J.B. Reitz, E.I. Solomon, J. Am. Chem. Soc. 120, 11467 (1998)

    CAS  Google Scholar 

  12. V.P. Reddy, A.V. Kumar, K. Swapna, K.R. Rao, Org. Lett. 11, 951 (2009)

    CAS  PubMed  Google Scholar 

  13. Y. Guo, M. Dai, Z. Zhu, Y. Chen, H. He, T. Qin, Appl. Surf. Sci. 480, 601 (2019)

    CAS  Google Scholar 

  14. Z. Wang, Y. Zhang, H. Xiong, C. Qin, W. Zhao, X. Liu, Sci. Rep. 8, 6530 (2018)

    PubMed  PubMed Central  Google Scholar 

  15. M. Li, Y. Li, Q. Zhang, C. Qin, W. Zhao, Z. Wang, A. Inoue, Appl. Surf. Sci. 483, 285 (2019)

    CAS  Google Scholar 

  16. X. Yue, X. Luo, Z. Zhou, Y. Wu, Y. Hong Bai, New J. Chem. 43, 4947 (2019)

    CAS  Google Scholar 

  17. Y. Fan, P.F. Liu, Z.J. Yang, Ionics 21, 185 (2015)

    CAS  Google Scholar 

  18. M. Mirzaee, C. Dehghanian, J. Iran. Chem. Soc. 16, 283 (2019)

    CAS  Google Scholar 

  19. S.Y. Kim, C.H. Ahn, J.H. Lee, Y.H. Kwon, S. Hwang, J.Y. Lee, H.K. Cho, A.C.S. Appl, Mater. Interfaces 5, 2417 (2013)

    CAS  Google Scholar 

  20. S. Brittman, Y. Yoo, N.P. Dasgupta, S.I. Kim, B. Kim, P. Yang, Nano Lett. 14, 4665 (2014)

    CAS  PubMed  Google Scholar 

  21. H. Wei, H. Gong, L. Chen, M. Zi, B. Cao, J. Phys. Chem. C 116, 10510 (2012)

    CAS  Google Scholar 

  22. M. Ristov, G. Sinadinovski, M. Mitreski, Thin Solid Films 167, 309 (1988)

    CAS  Google Scholar 

  23. J.K. Barton, A.A. Vertegel, E.W. Bohannan, J.A. Switzer, Chem. Mater. 13, 952 (2001)

    CAS  Google Scholar 

  24. T.D. Golden, M.G. Shumsky, Y. Zhou, R.A. VanderWerf, R.A. Van Leeuwen, J.A. Switzer, Chem. Mater. 8, 2499 (1996)

    CAS  Google Scholar 

  25. M. Ristov, G. Sinadinovski, I. Grozdanov, Thin Solid Films 123, 63 (1985)

    CAS  Google Scholar 

  26. Y. Nicolau, Appl. Surf. Sci. 22, 1061 (1985)

    Google Scholar 

  27. J. Zhao, X. Shu, Y. Wang, C. Yu, J. Zhang, J. Cui, Y. Qin, H. Zheng, J. Liu, Y. Zhang, Coat. Technol. Res. 299, 15 (2016)

    CAS  Google Scholar 

  28. Y. Li, S. Chang, X. Liu, J. Huang, J. Yin, G. Wang, D. Cao, Electrochim. Acta 85, 393 (2012)

    CAS  Google Scholar 

  29. Y. Yu, Y. Shi, C.H. Chen, Nanotechnology 18, 055706 (2007)

    Google Scholar 

  30. A.K. Potbhare, R.G. Chaudhary, P.B. Chouke, S. Yerpude, A. Mondal, V.N. Sonkusare, A.R. Rai, H.D. Juneja, Mater. Sci. Eng. C 99, 783 (2019)

    CAS  Google Scholar 

  31. K. Shiny, R. Sundararaj, N. Mamatha, B. Lingappa, MaderasCienc Tecnol 21, 1 (2019)

    Google Scholar 

  32. S. Biallozor, Electrochim. Acta 17, 1243 (1972)

    CAS  Google Scholar 

  33. A.I. Danilov, J.E.T. Andersen, E. Molodkina, Y.M. Polukarov, P. Møller, J. Ulstrup, Electrochim. Acta 43, 733 (1998)

    CAS  Google Scholar 

  34. C. Ji, G. Oskam, P.C. Searson, J. Electrochem. Soc. 148, C746 (2001)

    CAS  Google Scholar 

  35. O. Chyan, T.N. Arunagiri, T. Ponnuswamy, J. Electrochem. Soc. 150, C347 (2003)

    CAS  Google Scholar 

  36. J.L. Rosa, A. Robin, M. Silva, C.A. Baldan, M.P. Peres, J. Mater. Process. Technol. 209, 1181 (2009)

    CAS  Google Scholar 

  37. M.C. Figueiredo, I. Ledezma-Yanez, M.T. Koper, ACS Catal. 6, 2382 (2016)

    CAS  Google Scholar 

  38. R.D. Braun, Anal. Chim. Acta 99, 325 (1978)

    CAS  Google Scholar 

  39. R.D. Braun, Anal. Chim. Acta 120, 111 (1980)

    CAS  Google Scholar 

  40. L. Sestili, C. Furlani, A. Ciana, F. Garbassi, Electrochim. Acta 15, 225 (1970)

    CAS  Google Scholar 

  41. I. Kolthoff, J. Coetzee, J. Am. Chem. Soc. 79, 1852 (1957)

    CAS  Google Scholar 

  42. C. Furlani, L. Sestili, A. Ciana, F. Garbassi, Electrochim. Acta 12, 1393 (1967)

    CAS  Google Scholar 

  43. R.C. Larson, R.T. Iwamoto, J. Am. Chem. Soc. 82, 3239 (1960)

    CAS  Google Scholar 

  44. S. Min, X. Yang, A.Y. Lu, C.C. Tseng, M.N. Hedhili, L.J. Li, K.W. Huang, Nano Energy 27, 121 (2016)

    CAS  Google Scholar 

  45. D. He, G. Wang, G. Liu, H. Suo, C. Zhao, Dalton Trans. 46, 3318 (2017)

    CAS  PubMed  Google Scholar 

  46. S.K. Lee, H.C. Hsu, W.H. Tuan, Mater. Res. 19, 51 (2016)

    CAS  Google Scholar 

  47. C.W. Li, M.W. Kanan, J. Am. Chem. Soc. 134, 7231 (2012)

    CAS  PubMed  Google Scholar 

  48. A. Moreira, A.V. Benedetti, P. Cabot, P. Sumodjo, Electrochim. Acta 38, 981 (1993)

    CAS  Google Scholar 

  49. D. Tromans, R.H. Sun, J. Electrochem. Soc. 138, 3235 (1991)

    CAS  Google Scholar 

  50. K. Izutsu, Electrochemistry in Nonaqueous Solutions (Wiley, New York, 2009)

    Google Scholar 

  51. N. Topnani, S. Kushwaha, T. Athar, Int. J. Green Nanotechnol. Mater. Sci. Eng. 1, 67 (2009)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support of the Iran National Science Foundation, INSF, under Grant No. 96004700.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid R. Zare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadzadeh, S., Zare, H.R. & Khoshro, H. Electrochemical study of Cu2O/CuO composite coating produced by annealing and electrochemical methods. J IRAN CHEM SOC 16, 2719–2729 (2019). https://doi.org/10.1007/s13738-019-01736-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-019-01736-w

Keywords

Navigation