Skip to main content
Log in

Characterization of hydrogels formed by non-toxic chemical cross-linking of mixed nanofibrillated/heat-denatured whey proteins

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In the current research, whey protein isolate (WPI) solution was nanofibrillated or denatured by heating at pH 2.0 or 8.0, respectively. The formation of whey protein nanofibrils with a nanometric thickness and micrometric length was confirmed by atomic force microscopy. Subsequently, different concentrations of citric acid (0–200 mM) as a gelling agent was used to fabricate cold-set hydrogels from heat-denatured, fibrillated, and mixed fibrillated/heat-denatured protein solutions at pH value of 8.0. The fibrillated and mixed fibrillated/heat-denatured solutions required lower concentrations of citric acid to form self-supporting gels compared to the heat-denatured WPI. The formation of covalent bonds between the network-building protein units through the citric acid-induced gelation was confirmed by gel electrophoresis and Fourier transform infrared spectroscopy. Hydrogels made of nanofibrillated and mixed solutions were firmer, had a lower water holding capacity, and showed more degradation at the simulated gastric fluid than the gel from heat-denatured WPI. The increase in citric acid concentration also increased the firmness and gastric degradation stability of the hydrogel samples. The results also showed that the hydrogels in the presence of nanofibrils were degraded much more than the fibril-free gel samples in the simulated gastric condition. Generally, these findings suggested that the combination of nanofibrillation and citric acid-mediated cross-linking could be employed to fabricate hydrogels with excellent techno-functional attributes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C.D. Munialo, H.H. de Jongh, K. Broersen, E. van der Linden, A.H. Martin, J. Agric. Food Chem. 61, 11628 (2013)

    Article  CAS  Google Scholar 

  2. T. Nicolai, M. Britten, C. Schmitt, Food Hydrocoll. 25, 1945 (2011)

    Article  CAS  Google Scholar 

  3. A.H. Martin, G.A.H. de Jong, Dairy Sci. Technol. 92, 133 (2012)

    Article  CAS  Google Scholar 

  4. C. Veerman, H. Baptist, L.M. Sagis, E. van der Linden, J. Agric. Food Chem. 51, 3880 (2003)

    Article  CAS  Google Scholar 

  5. K.R. Kuhn, A.L.F. Cavallieri, R.L. da Cunha, Int. J. Food Sci. Technol. 45, 348 (2010)

    Article  CAS  Google Scholar 

  6. B. Hashemi, A. Madadlou, M. Salami, Food Chem. 237, 23 (2017)

    Article  CAS  Google Scholar 

  7. A. Abaee, A. Madadlou, A.A. Saboury, Food Hydrocoll. 63, 43 (2017)

    Article  CAS  Google Scholar 

  8. M. Mohammadian, M. Salami, Z. Emam-Djomeh, S. Momen, A.A. Moosavi-Movahedi, Int. J. Biol. Macromol. 120, 2247 (2018)

    Article  CAS  Google Scholar 

  9. H. Xu, L. Shen, L. Xu, Y. Yang, Biomed. Microdevices 17, 1 (2015)

    Article  Google Scholar 

  10. H. Xu, L. Shen, L. Xu, Y. Yang, Ind. Crops Prod. 74, 234 (2015)

    Article  CAS  Google Scholar 

  11. N. Reddy, Y. Li, Y. Yang, Biotechnol. Prog. 25, 139 (2009)

    Article  CAS  Google Scholar 

  12. T. Farjami, A. Madadlou, M. Labbafi, Food Hydrocoll. 50, 159 (2015)

    Article  CAS  Google Scholar 

  13. X. Wu, K. Nishinari, Z. Gao, M. Zhao, K. Zhang, Y. Fang, G.O. Phillips, F. Jiang, Food Hydrocoll. 52, 942 (2016)

    Article  CAS  Google Scholar 

  14. S.M. Loveday, J. Su, M.A. Rao, S.G. Anema, H. Singh, Int. Dairy J. 26, 133 (2012)

    Article  CAS  Google Scholar 

  15. C. Akkermans, A.J. van der Goot, P. Venema, E. van der Linden, R.M. Boom, Int. Dairy J. 18, 1034 (2008)

    Article  CAS  Google Scholar 

  16. M. Mohammadian, A. Madadlou, Int. J. Biol. Macromol. 89, 499 (2016)

    Article  CAS  Google Scholar 

  17. C.M. Bryant, D.J. McClements, Food Hydrocoll. 14, 383 (2000)

    Article  CAS  Google Scholar 

  18. A. Maltais, G.E. Remondetto, M. Subirade, Food Hydrocoll. 23, 1647 (2009)

    Article  CAS  Google Scholar 

  19. Y.Z. Gao, H.H. Xu, T.T. Ju, X.H. Zhao, J. Dairy Sci. 96, 7383 (2013)

    Article  CAS  Google Scholar 

  20. J. Gilbert, O. Campanella, O.G. Jones, Biomacromol 15, 3119 (2014)

    Article  CAS  Google Scholar 

  21. A. Kroes-Nijboer, H. Sawalha, P. Venema, A. Bot, E. Flöter, R. den Adel, E. van der Linden, Faraday Discuss. 158, 125 (2012)

    Article  CAS  Google Scholar 

  22. G.P. Hong, J.Y. Chun, Y.J. Jo, M.J. Choi, Korean J. Food Sci. Anim. 34, 207 (2014)

    Article  Google Scholar 

  23. I.B. O’Loughlin, B.A. Murray, P.M. Kelly, R.J. FitzGerald, A. Brodkorb, J. Agric. Food Chem. 60, 4895 (2012)

    Article  Google Scholar 

  24. B.E. Meza, R.A. Verdini, A.C. Rubiolo, Food Hydrocoll. 23, 661 (2009)

    Article  CAS  Google Scholar 

  25. D. Oboroceanu, L. Wang, A. Brodkorb, E. Magner, M.A. Auty, J. Agric. Food Chem. 58, 3667 (2010)

    Article  CAS  Google Scholar 

  26. L. Bagheri, M. Yarmand, A. Madadlou, M.E. Mousavi, J. Microencapsul. 31, 636 (2014)

    Article  CAS  Google Scholar 

  27. A. Barth, BBA Bioenerg. 1767, 1073 (2007)

    Article  CAS  Google Scholar 

  28. M. Mohammadian, A. Madadlou, Food Hydrocoll. 52, 221 (2016)

    Article  CAS  Google Scholar 

  29. J. Kong, S. Yu, Acta Biochim. Biophys. Sin. 39, 549 (2007)

    Article  CAS  Google Scholar 

  30. Y.H. Zhang, L.H. Huang, Z.C. Wei, Eur. Food Res. Technol. 239, 971 (2014)

    Article  CAS  Google Scholar 

  31. F.H. Shikha, M.I. Hossain, K. Morioka, S. Kubota, Y. Itoh, Fisheries Sci. 72, 870 (2006)

    Article  CAS  Google Scholar 

  32. Y.H. Zhang, L.H. Huang, Food Sci. Biotechnol. 23, 1417 (2014)

    Article  CAS  Google Scholar 

  33. J.P. Peters, H. Luyten, A.C. Alting, R.M. Boom, A.J. van der Goot, Food Hydrocoll. 44, 277 (2015)

    Article  CAS  Google Scholar 

  34. B. Ghalandari, A. Divsalar, A.A. Saboury, K. Parivar, J. Iran. Chem. Soc. 12, 613 (2015)

    Article  CAS  Google Scholar 

  35. L. Bateman, A. Ye, H. Singh, J. Agric. Food Chem. 58, 9800 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The support of the University of Tehran and Iran National Science Foundation (INSF) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Salami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadian, M., Salami, M. & Emam-Djomeh, Z. Characterization of hydrogels formed by non-toxic chemical cross-linking of mixed nanofibrillated/heat-denatured whey proteins. J IRAN CHEM SOC 16, 2731–2741 (2019). https://doi.org/10.1007/s13738-019-01733-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-019-01733-z

Keywords

Navigation