Skip to main content
Log in

Carrier-mediated hollow fiber liquid-phase microextraction for preconcentration followed by spectrophotometric determination of amoxicillin

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Preconcentration followed by ultraviolet spectrophotometric determination of amoxicillin (Amox) in pharmaceuticals and water samples by using a three-phase hollow fiber microextraction technique based on carrier-mediated transport has been presented. Amox was extracted from an aqueous solution (source phase) at pH 9.0 into 1-octanol containing 5% (w/v) Aliquat-336 impregnated in the pores of a hollow fiber. It was then back-extracted into NaCl solution (pH = 4.0) which was already positioned as the receiving phase inside the lumen of the hollow fiber. The extraction took place due to the concentration gradient of the counterion between the source and the receiving phases. Under the optimized conditions, an enrichment factor of 240 and a limit of detection of 0.2 μmol L−1 were obtained. The calibration curve was linear (R2 = 0.9967) in the concentration range of 0.5–10.0 µmol L−1 Amox. The interday relative standard deviation (n = 9) and the intraday relative standard deviation (n = 3) for 1.0 × 10−6 mol L−1 Amox solution were 7.3 and 6.4%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T.L. Gilchrist, Heterocyclic Chemistry (Longman Scientific, Harlow, 1987)

    Google Scholar 

  2. J.F. Prescott, J.D. Baggot, R.D. Walker, Antimicrobial Therapy in Veterinary Medicine, 3rd edn. (Iowa State University Press, Ames, IA, 2000)

    Google Scholar 

  3. J. Wang, J.D. Mac Neil, J.F. Kay, Chemical Analysis of Antibiotic Residues in Food, vol. 38 (Wiley, New York, 2011)

    Google Scholar 

  4. R.B. Morin, M. Gorman, The Biology of B-Lactam Antibiotics, 1st edn. (Elsevier, New York, 2014)

    Google Scholar 

  5. T. Rojanarata, P. Opanasopit, T. Ngawhirunpat, C. Saehuan, S. Wiyakrutta, V. Meevootisom, J. Enzyme, Microbial. Tech. 46, 292 (2010)

    CAS  Google Scholar 

  6. A. Goodman-Hillman, T. Rall, A. Nier, P. Taylor, The Pharmacological Basis of Therapeutics (McGraw Hill, New York, 1996)

    Google Scholar 

  7. R.G. Finch, D. Greenwood, S.R. Norrby, R.J. Whitley, Antibiotics and Chemotherapy: Anti-infective Agents and Their Use in Therapy (Churchill Livingstone, Edinburgh, 2003)

    Google Scholar 

  8. H. Hitner, B. Nagle, Pharmacology: An Introduction (McGraw Hill, New York, 2015)

    Google Scholar 

  9. J.F. Prescott, J.D. Baggot, R.D. Walker, Antimicrobial Therapy in Veterinary Medicine, 3rd edn. (Iowa State University Press, Ames, 2000)

    Google Scholar 

  10. G. Absalan, M. Akhond, H. Ershadifar, J. Solid, State Electrochem. 19, 2491 (2015)

    CAS  Google Scholar 

  11. W.A. Remers, J.N. Delagado, Textbook on Organic Medicinal and Pharmaceutical Chemistry (Lippincott-Raven Publishers, New York, 1998)

    Google Scholar 

  12. E. Benito-Pena, J.L. Urraca, M.C. Moreno-Bondi, J. Pharm. Biomed. Anal. 49, 289 (2009)

    CAS  PubMed  Google Scholar 

  13. M. Dousa, R. Hosmanova, J. Pharm. Biomed. Anal. 37, 373 (2005)

    CAS  PubMed  Google Scholar 

  14. H. Liu, H. Wang, V.B. Sunderland, J. Pharm. Biomed. Anal. 37, 395 (2005)

    CAS  PubMed  Google Scholar 

  15. S. De Baere, P. De Backer, Anal. Chim. Acta 586, 319 (2007)

    PubMed  Google Scholar 

  16. M. Hernandez, F. Borrull, M. Calull, J. Chromatogr. B 731, 309 (1999)

    CAS  Google Scholar 

  17. F. Hasanpour, A.A. Ensafi, T. Khayamian, Anal. Chim. Acta 670, 44 (2010)

    CAS  PubMed  Google Scholar 

  18. P.B. Deroco, R.C. Rocha-Filho, O. Fatibello-Filho, Talanta 179, 115 (2018)

    CAS  PubMed  Google Scholar 

  19. G. Absalan, A. Abbaspour, M. Jafari, M. Nekoeinia, H. Ershadifar, J. Iran. Chem. Soc. 12, 879 (2015)

    CAS  Google Scholar 

  20. A. Sarafraz-Yazdi, A. Amiri, Trends Anal. Chem. 29, 1 (2010)

    CAS  Google Scholar 

  21. S. Pedersen-Bjergaard, K.E. Rasmussen, J. Anal. Chem. 71, 2650 (1999)

    CAS  Google Scholar 

  22. L. Li, B. Hu, Talanta 72, 472 (2007)

    CAS  PubMed  Google Scholar 

  23. A. Gjelstad, T.M. Andersen, K.E. Rasmussen, S. Pedersen-Bjergaard, J. Chromatog. A 1157, 38 (2007)

    CAS  Google Scholar 

  24. N. Megersa, J. Anal. Methods 7, 9940 (2015)

    CAS  Google Scholar 

  25. C.A.M. Afonso, J.G. Crespo, J. Angew. Chem. Int. Ed. 43, 5293 (2004)

    CAS  Google Scholar 

  26. J.D. Rogers, R.L. Long, J. Membr. Sci. 134, 1 (1997)

    CAS  Google Scholar 

  27. I.M. Coelhoso, M.M. Cardoso, R.M.C. Viegas, J.P.S.G. Crespo, J. Sep. Purif. Technol. 19, 183 (2000)

    CAS  Google Scholar 

  28. T.S. Ho, J.L.E. Reubsaet, H.S. Anthonsen, S. Pedersen-Bjergaard, K.E. Rasmussen, J. Chromatogr. A 1072, 29 (2005)

    CAS  PubMed  Google Scholar 

  29. T.S. Ho, T.G. Halvorsen, S. Pedersen-Bjergaard, K.E. Rasmussen, J. Chromatogr. A 998, 61 (2003)

    CAS  PubMed  Google Scholar 

  30. S. Pedersen-Bjergaard, K.E. Rasmussen, J. Chromatogr. A 1184, 132 (2008)

    CAS  PubMed  Google Scholar 

  31. Y. Yamini, C.T. Reimann, A. Vatanara, J.A. Jönsson, J. Chromatogr. A 1124, 57 (2006)

    CAS  PubMed  Google Scholar 

  32. K. Mahdavi Ara, Z. Akhoondpouramiri, F. Raofie, J. Chromatogr. B 931, 145 (2013)

    Google Scholar 

  33. T.S. Ho, T.G. Halvorsen, S. Pedersen-Bjergaard, K.E. Rasmussen, J. Chromatogr. A 998, 61 (2003)

    CAS  PubMed  Google Scholar 

  34. S. Shariati, Y. Yamini, A. Esrafili, J. Chromatogr. B 877, 393 (2009)

    CAS  Google Scholar 

  35. V. Homem, A. Alves, L. Santos, Sci. Total Environ. 408, 6272 (2010)

    CAS  PubMed  Google Scholar 

  36. W.M. Haynes, CRC Handbook of Chemistry and Physics, 94th edn. (CRC Press, Boca Raton, 2016)

    Google Scholar 

  37. T. Suzuki, R.U. Ebert, G. Schüürmann, J. Chem. Inf. Comput. Sci. 37, 1122 (1997)

    CAS  Google Scholar 

  38. I.M. Smallwood, Handbook of Organic Solvent Properties, 1st edn. (Great Britain, London, 1996)

    Google Scholar 

  39. C.L. Yaws, J.R. Hopper, S.D. Sheth, M. Han, R.W. Pike, J. Waste Manag. 17, 541 (1998)

    Google Scholar 

  40. J.A. Riddick, W.B. Bunger, T.K. Sakano, Techniques of Chemistry Volume II: Organic Solvents (Wiley, New York, 1985)

    Google Scholar 

  41. S.H. Yalkowsky, Y. He, P. Jain, Handbook of Aqueous Solubility Data, 2nd edn. (CRC Press, Boca Raton, 2010)

    Google Scholar 

  42. D.G. Shaw, A. Maczynski, M. Goral, B. Wisniewska-Goclowska, A. Skrzecz, I. Owczarek, K. Blazej, M.C. Haulait-Pirson, G.T. Hefter, F. Kapuku, Z. Maczynska, J. Phys. Chem. Ref. Data 34, 2261 (2005)

    CAS  Google Scholar 

  43. Q.L. Chang, J.Y. Chen, Appl. Biochem. Biotechnol. 62, 119 (1997)

    CAS  PubMed  Google Scholar 

  44. P. Li, B. Hu, M. He, B. Chen, J. Chromatogr. A 1356, 23 (2014)

    CAS  PubMed  Google Scholar 

  45. H. Ebrahimzadeh, A.A. Asgharinezhad, L. Adlnasab, N. Shekari, J. Sep. Sci. 35, 2040 (2012)

    CAS  PubMed  Google Scholar 

  46. A. Bjørhovde, T.G. Halvorsen, K.E. Rasmussen, S. Pedersen-Bjergaard, Anal. Chim. Acta 491, 155 (2003)

    Google Scholar 

  47. A. Kar, Pharmaceutical Drug Analysis, 2nd edn. (New Age International, New Delhi, 2005)

    Google Scholar 

  48. F.A. Ibrahim, J.J.M. Nasr, J. Anal. Methods 6, 1523 (2014)

    CAS  Google Scholar 

  49. R. Injac, N. Kočevar, B. Štrukelj, Croat. Chem. Acta 82, 685 (2009)

    CAS  Google Scholar 

  50. G.G. Mohamed, J. Pharm. Biomed. Anal. 24, 561 (2001)

    CAS  PubMed  Google Scholar 

  51. N. Tavakoli, J. Varshosaz, F. Dorkoosh, M.R. Zargarzadeh, J. Pharm. Biomed. Anal. 43, 325 (2007)

    CAS  PubMed  Google Scholar 

  52. M. Ahmadi, T. Madrakian, A. Afkhami, Talanta 148, 122 (2016)

    CAS  PubMed  Google Scholar 

  53. D.P. Santos, M.F. Bergamini, M.V.B. Zanoni, Sens. Actuat. B Chem. Sens. Actuat. B Chem. 133, 398 (2008)

    CAS  Google Scholar 

  54. G. Hoizey, D. Lamiable, C. Frances, T. Trenque, M. Kaltenbach, J. Pharm. Biomed. Anal. 30, 661 (2002)

    CAS  PubMed  Google Scholar 

  55. M. Dousa, R. Hosmanova, J. Pharm. Biomed. Anal. 37, 373 (2005)

    CAS  PubMed  Google Scholar 

  56. F. Hasanpour, A.A. Ensafi, T. Khayamian, Anal. Chim. Acta 670, 44 (2010)

    CAS  PubMed  Google Scholar 

  57. Z.G. Yu, R.Y. Lai, Talanta 176, 619 (2018)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors are grateful to Shiraz University Research Council for the financial support of this project and would also like to thank Farabi Co. (Esfahan, Iran) for providing amoxicillin sample.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Morteza Akhond or Ghodratollah Absalan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zare Khafri, B., Akhond, M. & Absalan, G. Carrier-mediated hollow fiber liquid-phase microextraction for preconcentration followed by spectrophotometric determination of amoxicillin. J IRAN CHEM SOC 16, 2683–2692 (2019). https://doi.org/10.1007/s13738-019-01730-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-019-01730-2

Keywords

Navigation