Advertisement

Novel perovskite nanocatalyst (BiFeO3) for the photodegradation of rhodamine B/tartrazine and swift reduction of nitro compounds

  • Harminder SinghEmail author
  • Jaspreet Kaur Rajput
Original Paper
  • 23 Downloads

Abstract

Design and synthesis of visible light respondent photocatalyst with high separation efficiency is of great importance due to its application in practical point of view. In this presentation, novel perovskite-structured BiFeO3 nanoparticles have been successfully synthesized by simple, cost-effective and eco-friendly technique. The BiFeO3 nanoparticles were prepared by using different chelating agents (sucrose, citric acid, tartaric acid and urea) and under different range of calcination temperature (150–850 °C). Different characterization techniques such as FT-IR, XRD, VSM, BET, TEM and UV–Vis spectroscopy have been used for its structure evaluation. Further, by using this catalyst, a green approach has been developed for the removal of harmful organic compounds from the industrial waste. The catalytic activity was assessed by the catalytic degradation of industrial waste dyes such as rhodamine B and tartrazine (first time by perovskite-structured material) in aqueous media under sunlight irradiation and reduction of various nitro compounds to corresponding amines (in s) by using NaBH4 in green solvent water at room temperature. Effect of all types of BiFeO3 nanoparticles on catalytic degradation and reduction was investigated. BiFeO3 nanoparticles prepared by sucrose as chelating agent and calcinated at 650° were selected as a better catalyst on the basis of its performance in degradation and reduction experiment. Thus, the present approach provides a promising way to prepare noble catalyst for extensive applications in degradation/reduction of organic pollutants. The examination of degraded products of dye has been carried out by using FT-IR; mass spectroscopy and UV–Vis spectroscopy and confirmation of reduction of nitrocompounds with UV–Vis spectroscopy.

Keywords

RhB Tartrazine Degradation Reduction Photocatalyst BiFeO3 

Notes

Acknowledgements

We are thankful to IIT Ropar for Mass spectroscopy, CIL IIT Roorkee for VSM, BIT Bengaluru for BET, SAIF, Panjab University Chandigarh for TEM, Department of Chemistry NIT Jalandhar for FT-IR and UV–Vis spectroscopy. One of the authors (H.S) is thankful to UGC for providing the research fellowship. We would like to thank Miss Priya Arora and Miss Jigyasa Badhan for their valuable suggestions in the manuscript writing.

Supplementary material

13738_2019_1710_MOESM1_ESM.docx (475 kb)
Supplementary material 1 (DOCX 474 kb)

References

  1. 1.
    Z. Yang, Y. Ma, Y. Liu, Q. Li, Z. Zhou, Z. Ren, Chem. Eng. J. 315, 403 (2017)CrossRefGoogle Scholar
  2. 2.
    T. Soltani, M.H. Entezari, Chem. Eng. J. 223, 145 (2013)CrossRefGoogle Scholar
  3. 3.
    H. Kusic, I. Peternel, S. Ukic, N. Koprivanac, T. Bolanca, S. Papic, Chem. Eng. J. 172, 109 (2011)CrossRefGoogle Scholar
  4. 4.
    O.A. Attallah, M.A. Al-ghobashy, M.Y. Salem, RSC Adv. 6, 11461 (2016)CrossRefGoogle Scholar
  5. 5.
    R. Nagaraja, N. Kottam, C.R. Girija, B.M. Nagabhushana, Powder Technol. 215, 91 (2012)CrossRefGoogle Scholar
  6. 6.
    L. You-ji, C. Wei, Catal. Sci. Technol. 1, 802 (2011)CrossRefGoogle Scholar
  7. 7.
    D. Gudovan, A. Ficai, D. Ficai, B.S. Vasile, M. Science 10, 1329 (2015)Google Scholar
  8. 8.
    A. Jodat, Water Treat. 52, 2668 (2014)CrossRefGoogle Scholar
  9. 9.
    G. Singh, S. Rani, A. Arora, Sanchita, H. Duggal, D. Mehta, Mol. Catal. 431, 15 (2017)CrossRefGoogle Scholar
  10. 10.
    N.M. Shooshtari, M.M. Ghazi, Chem. Eng. J. 315, 527 (2017)CrossRefGoogle Scholar
  11. 11.
    R.M. Mohamed, I.A. Mkhalid, E.S. Baeissa, J. Nanotechnol. 1, 5 (2012)Google Scholar
  12. 12.
    T. Gao, Z. Chen, Y. Zhu, F. Niu, Q. Huang, L. Qin, Mater. Res. Bull. 59, 6 (2014)CrossRefGoogle Scholar
  13. 13.
    L.M. Cotoruelo, M.D. Marqués, F.J. Díaz, J. Rodríguez-Mirasol, J.J. Rodríguez, T. Cordero, Chem. Eng. J. 184, 176 (2012)CrossRefGoogle Scholar
  14. 14.
    A.G. Karunanayake, O.A. Todd, M.L. Crowley, L.B. Ricchetti, C.U. Pittman, R. Anderson, Chem. Eng. J. 319, 75 (2017)CrossRefGoogle Scholar
  15. 15.
    A. Hernández-Gordillo, V.R. González, Chem. Eng. J. 261, 53 (2015)CrossRefGoogle Scholar
  16. 16.
    V.S. Kirankumar, S. Sumathi, Mater. Res. Bull. 93, 74 (2017)CrossRefGoogle Scholar
  17. 17.
    B. Zeynizadeh, I. Mohammadzadeh, Z. Shokri, S.A. Hosseini, J. Colloid Interface Sci. 500, 285 (2017)CrossRefGoogle Scholar
  18. 18.
    S.F.N. Rashidi, J. Iran. Chem. Soc. 6, 1021 (2012)Google Scholar
  19. 19.
    P.S. Rathore, R. Patidar, T. Shripathi, S. Thakore, Catal. Sci. Technol. 22, 286–295 (2014)Google Scholar
  20. 20.
    S. Sumathi, V. Lakshmipriya, J. Mater. Sci.: Mater. Electron. 28, 2795 (2017)Google Scholar
  21. 21.
    M. Kumarraja, K. Pitchumani, Appl. Catal. A Gen. 265, 135 (2004)CrossRefGoogle Scholar
  22. 22.
    T. Soltani, M.H. Entezari, Ultrason. Sonochem. 20, 1245 (2013)CrossRefGoogle Scholar
  23. 23.
    G. Singh, V.S. Tiwari, P. Tiwari, A.K. Srivastava, P.K. Gupta, J. Alloys Compd. 509, 4127 (2011)CrossRefGoogle Scholar
  24. 24.
    M.A. Aghayan, M.A. Rodríguez, Mater. Sci. Eng., C 32, 2464 (2012)CrossRefGoogle Scholar
  25. 25.
    H. Singh, J.K. Rajput, J. Mater. Sci. 53, 3163 (2018)CrossRefGoogle Scholar
  26. 26.
    S. Farhadi, M. Zaidi, J. Mol. Catal. A: Chem. 299, 18 (2009)CrossRefGoogle Scholar
  27. 27.
    Y. Wang, Y. Hu, L. Fei, Y. Zhang, J. Yuan, H. Gu, J. Nanomater. 2011, 797639 (2011)Google Scholar
  28. 28.
    M. Arora, P.C. Sati, S. Chauhan, S. Chhoker, A.K. Panwar, M. Kumar, J. Supercond. Nov. Magn. 26, 443 (2013)CrossRefGoogle Scholar
  29. 29.
    S. Chakraborty, S. Mukherjee, J. Aust. Ceram. Soc. 51, 45 (2015)Google Scholar
  30. 30.
    N. Das, R. Majumdar, A. Sen, H.S. Maiti, Mater. Lett. 61, 2100 (2007)CrossRefGoogle Scholar
  31. 31.
    F. Gao, X. Chen, K. Yin, S. Dong, Z. Ren, F. Yuan, Adv. Mater. 19, 2889 (2007)CrossRefGoogle Scholar
  32. 32.
    A. Manzoor, A.M. Afzal, M. Umair, A. Ali, M. Rizwan, M.Z. Yaqoob, J. Magn. Magn. Mater. 393, 269 (2015)CrossRefGoogle Scholar
  33. 33.
    D.K. Palchaev, M.P. Faradzheva, S.A. Sadykov, M.K. Rabadanov, Z.K. Murlieva, S.N. Kallaev, Tech. Phys. Lett. 40, 961 (2014)CrossRefGoogle Scholar
  34. 34.
    B. Bhushan, A. Basumallick, S.K. Bandopadhyay, N.Y. Vasanthacharya, D. Das, J. Phys. D Appl. Phys. 42, 65004 (2009)CrossRefGoogle Scholar
  35. 35.
    C. Fu, M. Huo, W. Cai, X. Deng, J. Ceram. Process. Res. 13(561), 561 (2012)Google Scholar
  36. 36.
    J. Lu, L.J. Qiao, P.Z. Fu, Y.C. Wu, 318, 936 (2011)Google Scholar
  37. 37.
    Y. Hu, L. Fei, Y. Zhang, J. Yuan, Y. Wang, J Nanometer, 797639 (2011)Google Scholar
  38. 38.
    A. Maleki, R. Rahimi, S. Maleki, Synth. Met. 194, 11 (2014)CrossRefGoogle Scholar
  39. 39.
    H. Shokrollahi, Magnetic. Powder Technol. 235, 953 (2013)CrossRefGoogle Scholar
  40. 40.
    J.L. Ortiz-Quiñonez, D. Díaz, I. Zumeta-Dubé, H. Arriola-Santamaría, I. Betancourt, P. Santiago-Jacinto, Inorg. Chem. 52, 10306 (2013)CrossRefGoogle Scholar
  41. 41.
    M. Ea, A. Sm, B. Yo, K. Cd, J. Mater. Sci. Eng. 5, 3 (2016)Google Scholar
  42. 42.
    J.P. Singh, R.C. Srivastava, H.M. Agrawal, A.I.P. Conf, Proc. 1276, 137 (2010)Google Scholar
  43. 43.
    B.S. Avinash, V.S. Chaturmukha, H.S. Jayanna, C.S. Naveen, M.P. Rajeeva, B.M. Harish, AIP, 20426 (2016)Google Scholar
  44. 44.
    T. Soltani, M.H. Entezari, J. Mol. Catal. A: Chem. 377, 197 (2013)CrossRefGoogle Scholar
  45. 45.
    K. Varunkumar, R. Hussain, G. Hegde, A.S. Ethiraj, Mater. Sci. Semicond. Process. 66, 149 (2017)CrossRefGoogle Scholar
  46. 46.
    H. Singh, J.K. Rajput, G. Govil, P. Arora, J. Badhan, Appl. Organomet. Chem. 32, 1 (2018)Google Scholar
  47. 47.
    M.V. Lopez-Ramon, F. Stoeckli, C. Moreno-Castilla, F. Carrasco-Marin, Carbon 37, 1215 (1999)CrossRefGoogle Scholar
  48. 48.
    R.C. Meena, Int. Res. J. Environ. Sci. 2, 35 (2013)Google Scholar
  49. 49.
    H. Atiqah, M. Azmy, N.A. Razuki, A.W. Aziz, J. Phys. Sci. 28, 85 (2017)Google Scholar
  50. 50.
    K. Nagaveni, G. Sivalingam, M.S. Hegde, G. Madras, Appl. Catal. B Environ. 48, 83 (2004)CrossRefGoogle Scholar
  51. 51.
    A.P. Toor, A. Verma, C.K. Jotshi, P.K. Bajpai, V. Singh, Dye. Pigment. 68, 53 (2006)CrossRefGoogle Scholar
  52. 52.
    W. Bahnemann, M. Muneer, M.M. Haque, Catal. Today 124, 133 (2007)CrossRefGoogle Scholar
  53. 53.
    N. Daneshvar, D. Salari, A.R. Khataee, J Photochem Photobiol A Chem. 157, 111 (2003)Google Scholar
  54. 54.
    A.R. Khataee, M. Fathinia, S. Aber, M. Zarei, J. Hazard. Mater. 181, 886 (2010)CrossRefGoogle Scholar
  55. 55.
    W. Luo, L. Zhu, N. Wang, H. Tang, M. Cao, Y. She, Environ. Sci. Technol. 44, 1786 (2010)CrossRefGoogle Scholar
  56. 56.
    M. Movahedi, A.R. Mahjoub, S. Janitabar-Darzi, J. Iran. Chem. Soc. 6, 570 (2009)CrossRefGoogle Scholar
  57. 57.
    P. Arora, A. Fermah, J.K. Rajput, H. Singh, J. Badhan, Environ. Sci. Pollut. Res. 24, 19546 (2017)CrossRefGoogle Scholar
  58. 58.
    M. Montazerozohori, Y. Branch, Environ. Prot. Eng. 38, 45–55 (2012)Google Scholar
  59. 59.
    A.K. Abay, X. Chen, D.-H. Kuo, New J. Chem. 41, 5628 (2017)CrossRefGoogle Scholar
  60. 60.
    J. Tang, R. Wang, M. Liu, Z. Zhang, Y. Song, S. Xue, Chem. Eng. J. 351, 1056 (2018)CrossRefGoogle Scholar
  61. 61.
    J. Wang, G. Zhang, Z. Zhang, X. Zhang, G. Zhao, F. Wen, Water Res. 40, 2143 (2006)CrossRefGoogle Scholar
  62. 62.
    Z. Lu, Z. Yu, J. Dong, M. Song, Y. Liu, X. Liu, Chem. Eng. J. 337, 228 (2018)CrossRefGoogle Scholar
  63. 63.
    Y. Wang, G. Tan, T. Liu, Y. Su, H. Ren, X. Zhang, Appl. Catal. B Environ. 234, 37 (2018)CrossRefGoogle Scholar
  64. 64.
    H. Dong, J. Sun, G. Chen, C. Li, Y. Hu, C. Lv, Phys. Chem. Chem. Phys. 16, 23915 (2014)CrossRefGoogle Scholar
  65. 65.
    S.P. Pattnaik, A. Behera, S. Martha, R. Acharya, K. Parida, J. Nanoparticle Res. 20, 10 (2018)CrossRefGoogle Scholar
  66. 66.
    H. Osman, Z. Su, X. Ma, Environ. Chem. Lett. 15, 435 (2017)CrossRefGoogle Scholar
  67. 67.
    M. Gobara, A. Baraka, Int. Lett. Chem. Phys. Astron. 33, 106 (2014)CrossRefGoogle Scholar
  68. 68.
    N. Serpone, Environ. Sci. Technol. 37, 5813 (2003)CrossRefGoogle Scholar
  69. 69.
    T. Rasheed, M. Bilal, H.M.N. Iqbal, S.Z.H. Shah, H. Hu, X. Zhang, Environ. Technol. 1, 1533–1543 (2017)Google Scholar
  70. 70.
    D. Ariyanti, M. Maillot, W. Gao, JECE 6, 539 (2018)Google Scholar
  71. 71.
    J.R. Steter, W.R.P. Barros, M.R.V. Lanza, A.J. Motheo, Chemosphere 117, 200 (2014)CrossRefGoogle Scholar
  72. 72.
    C. Ràfols, D. Barceló, J. Chromatogr. A 777, 177 (1997)CrossRefGoogle Scholar
  73. 73.
    L. Ai, H. Yue, J. Jiang, J. Mater. Chem. 22, 23447 (2012)CrossRefGoogle Scholar
  74. 74.
    A. Goyal, S. Bansal, P. Samuel, S. Singhal, J. Mater. Chem. A Mater. Energy Sustain. 2, 18848 (2014)CrossRefGoogle Scholar
  75. 75.
    A. Mondal, A. Mondal, B. Adhikary, Bull. Mater. Sci. 40, 321 (2017)CrossRefGoogle Scholar
  76. 76.
    W. Dong, S. Cheng, C. Feng, N. Shang, S. Gao, C. Wang, Catal. Commun. 90, 70 (2017)CrossRefGoogle Scholar
  77. 77.
    Z. Li, X. Xu, X. Jiang, Y. Li, Z. Yu, X. Zhang, RSC Adv. 5, 30062 (2015)CrossRefGoogle Scholar
  78. 78.
    S. Farhadi, F. Siadatnasab, J. Mol. Catal. A: Chem. 339, 108 (2011)CrossRefGoogle Scholar
  79. 79.
    E. Abroushan, S. Farhadi, A. Zabardasti, RSC Adv. 7, 18293 (2017)CrossRefGoogle Scholar
  80. 80.
    Q.I. Rahman, M. Ahmad, S.K. Misra, M. Lohani, Mater. Lett. 91, 170 (2013)CrossRefGoogle Scholar
  81. 81.
    S. Chatterjee, A.K. Tyagi, P. Ayyub, J. Nanomater. 2014, 1 (2014)CrossRefGoogle Scholar
  82. 82.
    K. Tanaka, K. Padermpole, T. Hisanaga, Water Res. 34, 327 (2000)CrossRefGoogle Scholar
  83. 83.
    M.P. Rao, J.J. Wu, A.M. Asiri, Water Sci. Technol. 75, 1421 (2017)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  1. 1.Department of ChemistryDr. B R Ambedkar National Institute of TechnologyJalandharIndia

Personalised recommendations