Skip to main content
Log in

Carbothermic synthesis of boron carbide with low free carbon using catalytic amount of magnesium chloride

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Microcrystalline boron carbide was synthesized from boric acid and carbon black in the presence of a small amount of magnesium chloride by carbothermal reduction method at 1600 °C. The presence of magnesium chloride in the mixture has a determining effect in increasing the yield of the reaction and lowering the residual free-carbon content of the resulting boron carbide. We have also shown that, compared to several reported carbothermal reduction methods, the present catalyst also considerably lowers the excess amount of boron compound precursor required to afford boron carbide with negligible free carbon. X-ray powder diffraction (XRD) pattern indicated that the product was rhombohedral B4C. No peak, corresponding to free carbon, was observed in the XRD diffraction pattern of the B4C product formed from H3BO3:C:MgCl2 in the molar ratio of 1.0:1.45:0.01. Scanning electron microscopy image also showed that the product is fully crystalline and consisted of uniformly sized particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F. Thévenot, Boron carbide—a comprehensive review. J. Eur. Ceram. Soc. 6, 205–225 (1990). https://doi.org/10.1016/0955-2219(90)90048-K

    Article  Google Scholar 

  2. V. Domnich, S. Reynaud, R.A. Haber, M. Chhowalla, Boron carbide: structure, properties, and stability under stress. J. Am. Ceram. Soc. 94, 3605–3628 (2011). https://doi.org/10.1111/j.1551-2916.2011.04865.x

    Article  CAS  Google Scholar 

  3. S. Ebrahimi, M.S. Heydari, H.R. Baharvandi, N. Ehsani, Effect of iron on the wetting, sintering ability, and the physical and mechanical properties of boron carbide composites: a review. Int. J. Refract. Metals Hard Mater. 57, 78–92 (2016). https://doi.org/10.1016/j.ijrmhm.2016.02.007

    Article  CAS  Google Scholar 

  4. M. Mashhadi, E. Taheri-Nassaj, V.M. Sglavo, H. Sarpoolaky, N. Ehsani, Effect of Al addition on pressureless sintering of B4C. Ceram. Int. 35, 831–837 (2009). https://doi.org/10.1016/j.ceramint.2008.03.003

    Article  CAS  Google Scholar 

  5. S. Sharma, J. Bijwe, S. Panier, Assessment of potential of nano and micro-sized boron carbide particles to enhance the abrasive wear resistance of UHMWPE. Compos. B Eng. 99, 312–320 (2016). https://doi.org/10.1016/j.compositesb.2016.06.003

    Article  CAS  Google Scholar 

  6. K. Jagannadham, T. Watkins, M. Lance, L. Riester, R. Lemaster, Laser physical vapor deposition of boron carbide films to enhance cutting tool performance. Surf. Coat. Technol. 203, 3151–3156 (2009). https://doi.org/10.1016/j.surfcoat.2009.03.049

    Article  CAS  Google Scholar 

  7. A. Suri, C. Subramanian, J. Sonber, T.C. Murthy, Synthesis and consolidation of boron carbide: a review. Int. Mater. Rev. 55, 4–40 (2010). https://doi.org/10.1179/095066009X12506721665211

    Article  CAS  Google Scholar 

  8. M. Shokrieh, G. Javadpour, Penetration analysis of a projectile in ceramic composite armor. Compos. Struct. 82, 269–276 (2008). https://doi.org/10.1016/j.compstruct.2007.01.023

    Article  Google Scholar 

  9. S. Junlong, L. Changxia, T. Jin, F. Baofu, Erosion behavior of B4C based ceramic nozzles by abrasive air-jet. Ceram. Int. 38, 6599–6605 (2012). https://doi.org/10.1016/j.ceramint.2012.05.045

    Article  CAS  Google Scholar 

  10. D. Jianxin, Erosion wear of boron carbide ceramic nozzles by abrasive air-jets. Mater. Sci. Eng. A 408, 227–233 (2005). https://doi.org/10.1016/j.msea.2005.07.029

    Article  CAS  Google Scholar 

  11. A. Hushur, M.H. Manghnani, H. Werheit, P. Dera, Q. Williams, High-pressure phase transition makes B4. 3C boron carbide a wide-gap semiconductor. J. Phys. Condens. Matter 28(12), 045403 (2016). https://doi.org/10.1088/0953-8984/28/4/045403 pp)

    Article  CAS  PubMed  Google Scholar 

  12. A. Devaraju, K. Pazhanivel, Evaluation of microstructure, mechanical and wear properties of aluminium reinforced with boron carbide nano composite. Indian J. Sci. Technol. 9, 1–6 (2016). https://doi.org/10.17485/ijst/2016/v9i20/84294

    Article  CAS  Google Scholar 

  13. M.L. Natta, J.I. Brand, Efficiency in photovoltaic heteroisomeric boron carbide diodes. ECS Trans. 2, 135–139 (2007). https://doi.org/10.1149/1.2409037

    Article  Google Scholar 

  14. J. Liu, S. Wen, Y. Hou, F. Zuo, G.J. Beran, P. Feng, Boron carbides as efficient, metal-free, visible-light-responsive photocatalysts. Angew. Chem. 125, 3323–3327 (2013). https://doi.org/10.1002/anie.201209363

    Article  CAS  Google Scholar 

  15. E. Antolini, E. Gonzalez, Ceramic materials as supports for low-temperature fuel cell catalysts. Solid State Ion. 180, 746–763 (2009). https://doi.org/10.1016/j.ssi.2009.03.007

    Article  CAS  Google Scholar 

  16. X. Wu, Y. Gao, X.C. Zeng, Hydrogen storage in pillared Li-dispersed boron carbide nanotubes. J. Phys. Chem. C 112, 8458–8463 (2008). https://doi.org/10.1021/jp710022y

    Article  CAS  Google Scholar 

  17. L. Begrambekov, O. Buzhinskij, Features and advantages of boron carbide as a protective coating of the tokamak first wall. Plasma Dev. Oper. 15, 193–199 (2007). https://doi.org/10.1080/10519990701450657

    Article  CAS  Google Scholar 

  18. P.S. Reddy, R. Kesavan, B.V. Ramnath, Investigation of mechanical properties of aluminium 6061-silicon carbide. Boron Carbide Metal Matrix Compos. Silicon 10, 495–502 (2018). https://doi.org/10.1007/s12633-016-9479-8

    Article  CAS  Google Scholar 

  19. C.-H. Jung, M.-J. Lee, C.-J. Kim, Preparation of carbon-free B4C powder from B2O3 oxide by carbothermal reduction process. Mater. Lett. 58, 609–614 (2004). https://doi.org/10.1016/S0167-577X(03)00579-2

    Article  CAS  Google Scholar 

  20. A. Bute, R. Kar, S. Chopade, S. Desai, M. Deo, P. Rao et al., Effect of self-bias on the elemental composition and neutron absorption of boron carbide films deposited by RF plasma enhanced CVD. Mater. Chem. Phys. 182, 62–71 (2016). https://doi.org/10.1016/j.matchemphys.2016.07.005

    Article  CAS  Google Scholar 

  21. Z. Soltani, A. Beigzadeh, F. Ziaie, E. Asadi, Effect of particle size and percentages of boron carbide on the thermal neutron radiation shielding properties of HDPE/B4C composite: experimental and simulation studies. Radiat. Phys. Chem. 127, 182–187 (2016). https://doi.org/10.1016/j.radphyschem.2016.06.027

    Article  CAS  Google Scholar 

  22. A. Erol, I. Pocan, E. Yanbay, O.A. Ersoz, F.Y. Lambrecht, Radiation shielding of polymer composite materials with wolfram carbide and boron carbide. Radiat. Protect. Environ. 39, 3–6 (2016). https://doi.org/10.4103/0972-0464.185147

    Article  Google Scholar 

  23. A. Sinha, T. Mahata, B.P. Sharma, Carbothermal route for preparation of boron carbide powder from boric acid–citric acid gel precursor. J. Nucl. Mater. 301, 165–169 (2002). https://doi.org/10.1016/S0022-3115(02)00704-3

    Article  CAS  Google Scholar 

  24. J.-Y. Min, B.-N. Lee, J.-S. Lee, J.-H. Lee, Neutron shielding performance of mortar containing synthetic high polymers and boron carbide. J. Korea Concr. Inst. 28, 197–204 (2016). https://doi.org/10.4334/JKCI.2016.28.2.197

    Article  Google Scholar 

  25. R. Jimbou, M. Saidoh, K. Nakamura, M. Akiba, S. Suzuki, Y. Gotoh et al., New composite composed of boron carbide and carbon fiber with high thermal conductivity for first wall. J. Nucl. Mater. 233, 781–786 (1996). https://doi.org/10.1016/S0022-3115(96)00306-6

    Article  Google Scholar 

  26. M.W. Mortensen, P.G. Sorensen, O. Bjorkdahl, M.R. Jensen, H.J. Gundersen, T. Bjornholm, Preparation and characterization of boron carbide nanoparticles for use as a novel agent in T cell-guided boron neutron capture therapy. Appl. Radiat. Isot. 64, 315–324 (2006). https://doi.org/10.1016/j.apradiso.2005.08.003

    Article  CAS  PubMed  Google Scholar 

  27. A.M. Hadian, J.A. Bigdeloo, The effect of time, temperature and composition on boron carbide synthesis by sol-gel method. J. Mater. Eng. Perform. 17, 44–49 (2008). https://doi.org/10.1007/s11665-007-9125-0

    Article  CAS  Google Scholar 

  28. A. Fathi, N. Ehsani, M. Rashidzadeh, H. Baharvandi, A. Rahimnejad, Synthesis of boron carbide nano particles using polyvinyl alcohol and boric acid. Ceramics Silikáty 56, 32–35 (2012)

    CAS  Google Scholar 

  29. N. Shawgi, S. Wang, Z. Wang, Y.N. Nie, Synthesis of nano particles and fiber-like shape boron carbide powder from poly(vinyl alcohol) and boric acid. J. Sol-Gel Sci. Technol. 82, 450–457 (2017). https://doi.org/10.1007/s10971-017-4320-4

    Article  CAS  Google Scholar 

  30. P. Amin, A.A. Nourbakhsh, P. Asgarian, R. Ebrahimi, Kahrizsangi, The effect of temperature and magnesium size on low temperature magnesiothermic synthesis of nano structures boron carbide by mesoporous carbon (CMK-1), Iran. J. Mater. Sci. Eng. 13, 12–18 (2016)

    Google Scholar 

  31. G. Rafi-ud-din, E. Zahid, M. Ahmad, T. Maqbool, W.A. Subhani, Syed et al., Effect of cellulose-derived structural homogeneity of precursor on the synthesis and morphology of boron carbide. J. Inorg. Organomet. Polym. 25, 995–999 (2015). https://doi.org/10.1007/s10904-015-0181-x

    Article  CAS  Google Scholar 

  32. R. Mohanty, K. Balasubramanian, S. Seshadri, Multiphase formation of boron carbide in B2O3–Mg–C based micropyretic process. J. Alloys Compd. 441, 85–93 (2007). https://doi.org/10.1016/j.jallcom.2006.09.069

    Article  CAS  Google Scholar 

  33. B. Ozcelik, C. Ergun, Synthesis of boron carbide nanoparticles via spray pyrolysis. J. Mater. Res. 31, 2789–2803 (2016). https://doi.org/10.1557/jmr.2016.264

    Article  CAS  Google Scholar 

  34. J.A. Bigdeloo, A.M. Hadian, Synthesis of high purity micron size boron carbide powder from B2O3/C precursor. Int. J. Recent Trends Eng. 1(5), 176–180 (2009)

    Google Scholar 

  35. A. Alizadeh, E. Taheri-Nassaj, N. Ehsani, Synthesis of boron carbide powder by a carbothermic reduction method. J. Eur. Ceram. Soc. 24, 3227–3234 (2004). https://doi.org/10.1016/j.jeurceramsoc.2003.11.012

    Article  CAS  Google Scholar 

  36. T.R. Pilladi, K. Ananthansivan, S. Anthonysamy, Synthesis of boron carbide from boric oxide-sucrose gel precursor. Powder Technol. 246, 247–251 (2013). https://doi.org/10.1016/j.powtec.2013.04.055

    Article  CAS  Google Scholar 

  37. D.K. Bose, K.U. Nair, C.K. Gupta, Production of high purity boron carbide. High Temp. Mater. Process. 7, 133–140 (1986). https://doi.org/10.1515/HTMP.1986.7.2-3.133

    Article  CAS  Google Scholar 

  38. T.R. Pilladi, K. Ananthasivan, S. Anthonysamy, V. Ganesan, Synthesis of nanocrystalline boron carbide from boric acid–sucrose gel precursor. J. Mater. Sci. 47, 1710–1718 (2012). https://doi.org/10.1007/s10853-011-5950-5

    Article  CAS  Google Scholar 

  39. B.L. Grabchuk, P.S. Kislyi, Sintering of boron carbide containing small amounts of free carbon. Sov. Powder Metall. Metals Ceram. 14, 538–541 (1975). https://doi.org/10.1007/bf00810986

    Article  Google Scholar 

  40. H. Zeng, Y.-M. Kan, G.-J. Zhang, Synthesis of boron carbide powder from hexagonal boron nitride. Mater. Lett. 64, 2000–2002 (2010). https://doi.org/10.1016/j.matlet.2010.06.018

    Article  CAS  Google Scholar 

  41. T.N. Nazarchuk, L.N. Mekhanoshina, The oxidation of boron carbide. Sov. Powder Metall. Metals Ceram. 3, 123–126 (1964). https://doi.org/10.1007/bf00774482

    Article  Google Scholar 

  42. M. Bougoin, F. Thevenot, Pressureless sintering of boron carbide with an addition of polycarbosilane. J. Mater. Sci. 22, 109–114 (1987). https://doi.org/10.1007/bf0116055

    Article  CAS  Google Scholar 

  43. D. Annie, V. Chandramouli, S. Anthonysamy, Wet chemical method for determination of free carbon content in boron carbide. Int. J. Chem. Anal. Sci. 7, 1–4 (2016)

    Google Scholar 

  44. M. Alkan, M.S. Sonmez, B. Derin, O. Yucel, Purification attempts of B4C powders produced by metallothermic process, in Conference Paper, Proceedings of the 11th ECERS Conference, Krakow, 2009

  45. G. Goller, C. Toy, A. Tekin, C. Gupta, The production of boron carbide by carbothermic reduction. High Temp. Mater. Process. 15, 117–122 (1996). https://doi.org/10.1515/HTMP.1996.15.1-2.117

    Article  CAS  Google Scholar 

  46. A. Alizadeh, E. Taheri-Nassaj, N. Ehsani, H. Baharvandi, Production of boron carbide powder by carbothermic reduction from boron oxide and petroleum coke or carbon active. Adv. Appl. Ceram. 105, 291–296 (2006). https://doi.org/10.1179/174367606X146685

    Article  CAS  Google Scholar 

  47. A. C791-12, Standard Test Methods for Chemical, Mass Spectrometric, and Spectrochemical Analysis of Nuclear-Grade Boron Carbide, Designation: C791-12, ASTM 2012, pp. 1–25

  48. A. C751-16, Standard Specification for Nuclear-Grade Boron Carbide Pellets, C751-16, ASTM 2016, pp. 1–3

  49. A. C750-09, Standard Specification for Nuclear-Grade Boron Carbide Powder, C750-09, ASTM 2009, pp. 1–3

  50. M. Bakhshi, H. Arab, M.K. Amini, Comparison of sample preparation methods for determination of free carbon in boron carbide by X-ray powder diffraction. J. Iran. Chem. Soc. 13, 1673–1681 (2016). https://doi.org/10.1007/s13738-016-0884-0

    Article  CAS  Google Scholar 

  51. X. Chen, S. Dong, Y. Kan, H. Zhou, J. Hu, Y. Ding, Effect of glycerine addition on the synthesis of boron carbide from condensed boric acid–polyvinyl alcohol precursor. RSC Adv. 6, 9338–9343 (2016). https://doi.org/10.1039/C5RA23303H

    Article  CAS  Google Scholar 

  52. S. Miller, F. Toksoy, W. Rafaniello, R. Haber, Submicron boron carbide synthesis through rapid carbothermal reduction, in: J.J. Swab ed. by Advances in Ceramic Armor VIII: Ceramic Engineering and Science Proceedings, 33, 195–207 (2013) https://doi.org/10.1002/9781118217498.ch18

  53. S. Herth, W.J. Joost, R.H. Doremus, R.W. Siegel, New approach to the synthesis of nanocrystalline boron carbide. J. Nanosci. Nanotechnol. 6, 954–959 (2006). https://doi.org/10.1166/jnn.2006.186

    Article  CAS  PubMed  Google Scholar 

  54. Y. Gao, W. Rafaniello, M.F. Toksoy, T. Munhollon, R. Haber, Improvement of crystallization and particle size distribution of boric acid in the processing of a boron carbide precursor. RSC Adv. 5, 19067–19073 (2015). https://doi.org/10.1039/C4RA16279J

    Article  CAS  Google Scholar 

  55. Y. Gao, A. Etzold, T. Munhollon, W. Rafaniello, R. Haber, Processing factors influencing the free carbon contents in boron carbide powder by rapid carbothermal reduction. Diamond Relat. Mater. 61, 14–20 (2016). https://doi.org/10.1016/j.diamond.2015.11.005

    Article  CAS  Google Scholar 

  56. B. Chang, B. Gersten, J.W. Adams, S. Szewczyk, Preparation of boron carbide nanoparticles by carbothermal reduction method. Mater. Res. Soc. Symp. Proc. Camb. Univ. Press, 848, 1–6 (2005) https://doi.org/10.1557/PROC-848-FF9.28

    Article  Google Scholar 

  57. A.R.M. de Castro, J.O.A. Paschoal, Boron carbide synthesis by carbothermic reduction of boron oxide, in INIS-BR-1258, Sao Paulo, Brazil (1988)

Download references

Acknowledgements

The authors gratefully acknowledge full support of this work by the Sooreh Company, Isfahan, Islamic Republic of Iran.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Masoud Bakhshi or Mohammad K. Amini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhshi, M., Souri, A. & Amini, M.K. Carbothermic synthesis of boron carbide with low free carbon using catalytic amount of magnesium chloride. J IRAN CHEM SOC 16, 1265–1272 (2019). https://doi.org/10.1007/s13738-019-01602-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-019-01602-9

Keywords

Navigation