Skip to main content
Log in

Inter-relation between size and arrangement of TiO2 nanoparticle layers on efficiency of dye-sensitized solar cells

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The effects of TiO2 layer arrangement as photo-anode on the efficiency of dye-sensitized solar cells were investigated and presented. Four TiO2 nanoparticles being different from the TiO2 particle sizes and phases were prepared and characterized with TEM, AFM and XRD analyses. These TiO2 particles were used to prepare three-layered photo-anode with different layer arrangements. The J–V measurements and impedance spectroscopy of the assembled solar cells with these photo-anodes and N3 dye were investigated and interpreted. The photo-anode in which the particles were arranged from large to small (CBA) and the photo-anode in which the particle size is equal (BBB) presented the best efficiency. The BBB performance was related to the appropriate particle size in the B layer and was a driving force for electron transfer, which is inducted by the oxidized dyes. In the CBA sample, this driving force was enhanced by the different particle sizes in the layer interfaces.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B. Oregan, M. Gratzel, Nature 353, 737 (1991)

    Article  CAS  Google Scholar 

  2. L.M. Peter, J. Phys. Chem. Lett. 2 1861 (2011)

    Article  CAS  Google Scholar 

  3. M. Shojaeifar. E. Mohajerani, M. Fathollahi, J. Appl. Phys. 123, 13102 (2018)

    Article  CAS  Google Scholar 

  4. L. Vaillant, E. Vigil, F. Forcade, T. Thami, A. Ayral, P. Saint-Gregoire, H. Adnani, C. Yacou, Eur. Phys. J. Appl. Phys. 72, 20404 (2015)

    Article  CAS  Google Scholar 

  5. N. Kanetada. C. Matsumura. S. Yamazaki, K. Adachi, Acs Appl. Mater. Interfaces 5, 12991 (2013)

    Article  CAS  PubMed  Google Scholar 

  6. G. Hagfeldt, L.C. Boschloo, L. Sun, H. Kloo, Pettersson, Chem. Rev. 110, 6595 (2010)

    Article  CAS  PubMed  Google Scholar 

  7. M. Asemi, S. Maleki, M. Ghanaatshoar, J. Sol–Gel. Sci. Technol. 81, 645 (2017)

    Article  CAS  Google Scholar 

  8. M. Ameri. F. Samavat. E. Mohajerani, M. Fathollahi, J. Phys. D Appl. Phys. 49, 225601 (2016)

    Article  CAS  Google Scholar 

  9. M. Ameri, F. Samavat, E. Mohajerani, RSC Adv. 5, 92690 (2015)

    Article  CAS  Google Scholar 

  10. N.M. Green, E. Palomares, S.A. Haque, J.M. Kroon, J.R. Durrant, J. Phys. Chem. B 109, 12525 (2005)

    Article  CAS  PubMed  Google Scholar 

  11. S. Avinash, V.S. Chaturmukha, H.S. Jayanna, C.S. Naveen, M.P. Rajeeva, B.M. Harish, S. Suresh, A.R. Lamani, AIP conference proceedings 1728 20426 (2016)

  12. J. Lim, J.H. Um, K.J. Lee, S.H. Yu, Y.J. Kim, Y.E. Sung, J.K. Lee, Nanoscale 8, 5688 (2016)

    Article  CAS  PubMed  Google Scholar 

  13. N. Satoh. T. Nakashima. K. Kamikura, K. Yamamoto, Nat Nano 3, 106 (2008)

    Article  CAS  Google Scholar 

  14. S. Ardo, G.J. Meyer, Chem. Soc. Rev. 38, 115 (2009)

    Article  CAS  PubMed  Google Scholar 

  15. Y. Matsumoto. Y. Miura, S. Takata, J. Phys. Chem. C 120, 1472 (2016)

    Article  CAS  Google Scholar 

  16. P. Tahay, N. Safari, M.B.G. Afshani, A. Alavi, Z. Parsa. Phys. Chem. Chem. Phys. 19, 11187 (2017)

    Article  CAS  PubMed  Google Scholar 

  17. J. Bisquert, V.S. Vikhrenko, J. Phys. Chem. B 108, 2313 (2004)

    Article  CAS  Google Scholar 

  18. L. Kavan, M. Grätzel, S.E. Gilbert, C. Klemenz, H.J. Scheel, J. Am. Chem. Soc. 118, 6716 (1996)

    Article  CAS  Google Scholar 

  19. R. Jitchati, Y. Thathong, K. Wongkhan, Int. J. Appl. Phys. Math. 2, 107 (2012)

    Article  CAS  Google Scholar 

  20. S. Ito, P. Chen, P. Pechy, M. Gratzel, P. Comte, M.K. Nazeeruddin, P. Liska. Prog. Photovolt. 15, 603 (2007)

    Article  CAS  Google Scholar 

  21. F. Fabregat-Santiago. G. Garcia-Belmonte. I. Mora-Sero, J. Bisquert, Phys. Chem. Chem. Phys. 13, 9083 (2011)

    Article  CAS  PubMed  Google Scholar 

  22. K. Park, Q.F. Zhang, D. Myers, G.Z. Cao, Acs Appl Mater Interfaces 5, 1044 (2013)

    Article  CAS  PubMed  Google Scholar 

  23. J. Bisquert, F. Fabregat-Santiago, I. Mora-Sero, G. Garcia-Belmonte, E.M. Barea, E. Palomares, Inorg. Chim. Acta 361, 684 (2008)

    Article  CAS  Google Scholar 

  24. B.C. O’Regan, J.R. Durrant, Acc. Chem. Res. 42, 1799 (2009)

    Article  CAS  PubMed  Google Scholar 

  25. E. Ronca, M. Pastore, L. Belpassi. F. Tarantelli, F. De Angelis, Energy Environ. Sci. 6, 183 (2013)

    Article  CAS  Google Scholar 

  26. M. Pastore, T. Etienne, F. De Angelis, J. Mater. Chem. C 4, 4346 (2016)

    Article  CAS  Google Scholar 

  27. D.O. Scanlon, A.A. Sokol, C.W. Dunnill, J. Buckeridge, S.A. Shevlin, A.J. Logsdail, S.M. Woodley, C.R.A. Catlow, M.J. Powell, R.G. Palgrave, I.P. Parkin, G.W. Watson, T.W. Keal, P. Sherwood, A. Walsh. Nat. Mater. 12, 798 (2013)

    Article  CAS  PubMed  Google Scholar 

  28. S.K. Dhungel, J.G. Park, Himal. Phys. 4, 4 (2013)

    Google Scholar 

  29. Usami, Chem. Phys. Lett. 277, 105 (1997)

    Article  CAS  Google Scholar 

  30. S. Hore, P. Nitz, C. Vetter, C. Prahl, M. Niggemann, R. Kern, Chemical communications 2011 (2005)

  31. J.K. Lee, B.H. Jeong, S.I. Jang, Y.G. Kim, Y.W. Jang, S.B. Lee, M.R. Kim, J. Ind. Eng. Chem. 15, 724 (2009)

    Article  CAS  Google Scholar 

  32. W.Y. Rho, M. Vaseem, H.Y. Yang, T. Mahmoudi, S.K. Lee, Y.B. Hahn, Sci. Adv. Mater. 8, 236 (2016)

    Article  CAS  Google Scholar 

  33. N.G. Park, J. van de Lagemaat, A.J. Frank, J. Phys. Chem. B 104, 8989 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Ali Alavi for AFM analysis. This work was supported by Shahid Beheshti University and Iran National Science Foundation (INSF).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Nasser Safari.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 379 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahay, P., Babapour Gol Afshani, M. & Safari, N. Inter-relation between size and arrangement of TiO2 nanoparticle layers on efficiency of dye-sensitized solar cells. J IRAN CHEM SOC 16, 1189–1196 (2019). https://doi.org/10.1007/s13738-019-01596-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-019-01596-4

Keywords

Navigation