Skip to main content
Log in

Evaluation of digital camera as a portable colorimetric sensor for low-cost determination of inorganic arsenic (III) in industrial wastewaters by chemical hydride generation assisted-Fe(III) − 1, 10-phenanthroline as a green color agent

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

This research presents a novel, simple and green method for colorimetric determination of As(III) using a digital camera as the colorimeter. It is based on chemical hydride generation of arsine (AsH3) from acidic solution of As(III) by NaBH4 as well as the sequential reaction of arsine with Fe(III)-1,10-phenanthroline solution that produces red complex of Fe(II)-1,10-phenanthroline. The intensity of color red is related to the concentration of As(III) and acquired by image processing—Image J—software. To achieve the best sensitivity, we investigated the changes of RGB value in terms of red color intensity of the complex. Blue was the best as it showed the highest sensitivity. Under optimized conditions, the calibration curve was linear in the range of 1–25 µg mL−1 for As(III) and detection limit was 0.392 µg mL−1. The relative standard deviation (RSD) for five replicate measurements of 10, 15, 20 µg mL−1 of As(III) were 0.89, 2.43 and 3.08%, respectively. The proposed method was successfully used to determine As(III) in the industrial wastewater using standard addition method. The desirable recovery values (96–109%) indicate applicability of the proposed method for determination of As(III) in a complex matrix, such as industrial samples, in the presence of several unknown interferences without the need for any sample preparation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.H. Arbab-Zavar, M. Chamsaz, T. Heidari, Speciation and analysis of arsenic (III) and arsenic (V) by electrochemical hydride generation spectrophotometric method. Anal. Sci. 26(1), 107–110 (2010)

    Article  CAS  PubMed  Google Scholar 

  2. J. Das et al., Low-cost field test kits for arsenic detection in water. J. Environ. Sci. Health Part A 49(1), 108–115 (2014)

    Article  CAS  Google Scholar 

  3. X. Meng, C. Jing, G.P. Korfiatis, A review of redox transformation of arsenic in aquatic environments, in biogeochemistry of environmentally important trace elements (American Chemical Society, Washington DC, 2002), pp. 70–83

    Book  Google Scholar 

  4. M. Burguera, J. Burguera, Analytical methodology for speciation of arsenic in environmental and biological samples. Talanta 44(9), 1581–1604 (1997)

    Article  CAS  PubMed  Google Scholar 

  5. M. Hashemi, P. Modasser, Sequential spectrophotometric determination of inorganic arsenic species by hydride generation from selective medium reactions and colour bleaching of permanganate. Talanta 73(1), 166–171 (2007)

    Article  CAS  PubMed  Google Scholar 

  6. K.A. Francesconi, D. Kuehnelt, Determination of arsenic species: a critical review of methods and applications, 2000–2003. Analyst 129(5), 373–395 (2004)

    Article  CAS  PubMed  Google Scholar 

  7. X.-P. Yan, Z.-M. Ni, Vapour generation atomic absorption spectrometry. Anal. Chim. Acta 291(1), 89–105 (1994)

    Article  CAS  Google Scholar 

  8. A. Campbell, A critical survey of hydride generation techniques in atomic spectroscopy (technical report). Pure Appl. Chem. 64(2), 227–244 (1992)

    Article  CAS  Google Scholar 

  9. A.G. Howard, M.H. Arbab-Zavar, Determination of “inorganic” arsenic (III) and arsenic (V), “methylarsenic” and “dimethylarsenic” species by selective hydride evolution atomic-absorption spectroscopy. Analyst 106(1259), 213–220 (1981)

    Article  CAS  Google Scholar 

  10. A. Caiminagua et al., Electrochemical generation of arsenic volatile species using a gold/mercury amalgam cathode. Determination of arsenic by atomic absorption spectrometry. Anal. Chem. Res. 3, 82–88 (2015)

    Article  CAS  Google Scholar 

  11. J.M. Costa-Fernandez et al., Direct coupling of high-performance liquid chromatography to microwave-induced plasma atomic emission spectrometry via volatile-species generation and its application to mercury and arsenic speciation. J. Anal. At. Spectrom. 10(11), 1019–1025 (1995)

    Article  CAS  Google Scholar 

  12. F. El-Hadri, A. Morales-Rubio, M. de la Guardia, Atomic fluorescence spectrometric determination of trace amounts of arsenic and antimony in drinking water by continuous hydride generation. Talanta 52(4), 653–662 (2000)

    Article  CAS  PubMed  Google Scholar 

  13. Z. Zou et al., Ultrasensitive determination of inorganic arsenic by hydride generation-atomic fluorescence spectrometry using Fe3O4@ ZIF-8 nanoparticles for preconcentration. Microchem. J. 124, 578–583 (2016)

    Article  CAS  Google Scholar 

  14. Y.-L. Feng et al., Off-line separation and determination of inorganic arsenic species in natural water by high resolution inductively coupled plasma mass spectrometry with hydride generation combined with reaction of arsenic (V) and l-cysteine. Anal. Chim. Acta 375(1–2), 167–175 (1998)

    Article  CAS  Google Scholar 

  15. J.R. Farrell, P.J. Iles, Y.J. Yuan, Determination of arsenic by hydride generation gas diffusion flow injection analysis with electrochemical detection. Anal. Chim. Acta 334(1), 193–197 (1996)

    Article  CAS  Google Scholar 

  16. M.H. Arbab-Zavar, M. Hashemi, Evaluation of electrochemical hydride generation for spectrophotometric determination of As (III) by silver diethyldithiocarbamate. Talanta 52(6), 1007–1014 (2000)

    Article  CAS  PubMed  Google Scholar 

  17. J.A.G. Neto, R. Montes, A.A. Cardoso, Spectrophotometric detection of arsenic using flow-injection hydride generation following sorbent extraction preconcentration. Talanta 50(5), 959–966 (1999)

    Article  CAS  PubMed  Google Scholar 

  18. G. Stratton, H.C. Whitehead, Colorimetric determination of arsenic in water with silver diethyldithiocarbamate. J Am Water Works Assoc 54(7), 861–864 (1962)

    Article  CAS  Google Scholar 

  19. S. Kundu et al., Spectrophotometric determination of arsenic via arsine generation and in-situ colour bleaching of methylene blue (MB) in micellar medium. Talanta 58(5), 935–942 (2002)

    Article  CAS  PubMed  Google Scholar 

  20. E.P. Moraes et al., Low-cost method for quantifying sodium in coconut water and seawater for the undergraduate analytical chemistry laboratory: flame test, a mobile phone camera, and image processing. J. Chem. Educ. 91(11), 1958–1960 (2014)

    Article  CAS  Google Scholar 

  21. W. da Silva Lyra et al., Indirect determination of sodium diclofenac, sodium dipyrone and calcium gluconate in injection drugs using digital image-based (webcam) flame emission spectrometric method. Anal. Methods 3(9), 1975–1980 (2011)

    Article  CAS  Google Scholar 

  22. R. Gupta, R.G. Reifenberger, G.U. Kulkarni, Cellphone camera imaging of a periodically patterned chip as a potential method for point-of-care diagnostics. ACS Appl. Mater. Interfaces. 6(6), 3923–3929 (2014)

    Article  CAS  PubMed  Google Scholar 

  23. K. Grudpan et al., Applications of everyday IT and communications devices in modern analytical chemistry: a review. Talanta 136, 84–94 (2015)

    Article  CAS  PubMed  Google Scholar 

  24. S. Ayas et al., Counting molecules with a mobile phone camera using plasmonic enhancement. ACS Photonics 1(1), 17–26 (2014)

    Article  CAS  Google Scholar 

  25. Q. Wei et al., Detection and spatial mapping of mercury contamination in water samples using a smart-phone. ACS Nano 8(2), 1121–1129 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. E.H. Doeven et al., Red–green–blue electrogenerated chemiluminescence utilizing a digital camera as detector. Anal. Chem. 86(5), 2727–2732 (2014)

    Article  CAS  PubMed  Google Scholar 

  27. N. Moonrungsee, S. Pencharee, J. Jakmunee, Colorimetric analyzer based on mobile phone camera for determination of available phosphorus in soil. Talanta 136, 204–209 (2015)

    Article  CAS  PubMed  Google Scholar 

  28. J. Sankaran et al., Accuracy and precision in camera-based fluorescence correlation spectroscopy measurements. Anal. Chem. 85(8), 3948–3954 (2013)

    Article  CAS  PubMed  Google Scholar 

  29. www.imagej.net

  30. www.adobe.com/Photoshop

  31. A.M. Featherstone, et al., Determination of arsenic species in sea-water by hydride generation atomic fluorescence spectroscopy. J. Anal. At. Spectrom. 13(12), 1355–1360 (1998)

    Article  CAS  Google Scholar 

  32. E.L. Wehry, A. Ward Robert, Photoreduction of tris (1,10-phenanthroline) iron(III). Inorg. Chem. 10(12), 2660–2664 (1971)

    Article  CAS  Google Scholar 

  33. G. Somidevamma, G.G. Rao, Colorimetric determination of iron (III) with 1,10-phenanthroline. Fresenius Z. Anal. Chem. 187(3), 183–187 (1962)

    Article  CAS  Google Scholar 

  34. I.M. Kolthoff, D.L. Leussing, T.S. Lee, Reaction of ferrous and ferric iron with 1,10-phenanthroline. III. The ferrous monophenanthroline complex and the colorimetric determination of phenanthroline. J. Am. Chem. Soc. 72(5), 2173–2177 (1950)

    Article  Google Scholar 

  35. S.S. Michael, Determination of arsenic in sulfide samples containing antimony by atomic absorption spectrometry. Anal. Chem. 49(3), 451–453 (1977)

    Article  CAS  Google Scholar 

  36. Y. Zhang et al., Facile hydrothermal synthesis of vanadium oxides nanobelts by ethanol reduction of peroxovanadium complexes. Ceram. Int. 39(1), 129–141 (2013)

    Article  CAS  Google Scholar 

  37. Nassr, A.B.A.A., M. Bron, Microwave-assisted ethanol reduction as a new method for the preparation of highly active and stable CNT-supported PtRu electrocatalysts for methanol oxidation. ChemCatChem 5(6), 1472–1480 (2013)

    Article  CAS  Google Scholar 

  38. S.-R. Wang, W.J. Tseng, Aggregate structure and crystallite size of platinum nanoparticles synthesized by ethanol reduction. J. Nanopart. Res. 11(4), 947–953 (2009)

    Article  CAS  Google Scholar 

  39. B. Welz, M. Melcher, Mechanisms of transition metal interferences in hydride generation atomic-absorption spectrometry. Part 1. Influence of cobalt, copper, iron and nickel on selenium determination. Analyst 109(5), 569–572 (1984)

    Article  Google Scholar 

  40. B. Welz, M. Melcher, Mechanisms of transition metal interferences in hydride generation atomic-absorption spectrometry. Part 2. Influence of the valency state of arsenic on the degree of signal depression caused by copper, iron and nickel. Analyst 109(5), 573–575 (1984)

    Article  CAS  Google Scholar 

  41. B. Welz, M. Melcher, Mechanisms of transition metal interferences in hydride generation atomic-absorption spectrometry. Part 3. Releasing effect of iron(III) on nickel interference on arsenic and selenium. Analyst 109(5), 577–579 (1984)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of this research by Ferdowsi University of Mashhad, Mashhad, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahereh Heidari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damirchi, S., Heidari, T. Evaluation of digital camera as a portable colorimetric sensor for low-cost determination of inorganic arsenic (III) in industrial wastewaters by chemical hydride generation assisted-Fe(III) − 1, 10-phenanthroline as a green color agent. J IRAN CHEM SOC 15, 2549–2557 (2018). https://doi.org/10.1007/s13738-018-1443-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-018-1443-7

Keywords

Navigation