Synthesis, characterization, and metal uptake of multiple functionalized immobilized-polysiloxane diamine-thiol chelating ligand derivatives

Abstract

Immobilized-polysiloxane (diamine-thiol) tetraethylacetate, P-(NN-S)-TEA (where P represents [Si–O]n polysiloxane network), was synthesized using one-pot reaction of tetraethylorthosilicate (TEOS) with 3-(ethylenediaminetriethylacetate)propyltrimethoxysilane and 3-thiolethylacetatepropyltrimethoxysilane in the presence of cetyl trimethylammonium bromide (CTAB) as a surfactant. Its ethylenediamine and diethylenetriamine modified polysiloxane (diamine-thiol)-tetrakis(N-2-aminoethylacetamide), P-(NN-S)-TEA-NN, and polysiloxane (diamine-thiol)-tetrakis(N-diethylenediamineacetamide), P-(NN-S)-TEA-NNN chelating ligand systems were also obtained. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopic (XPS), and thermogravimetric analysis (TGA) techniques have been used for establishing their structures. An elemental CHNX combustion analyzer was used to determine the mass fractions of carbon, hydrogen, nitrogen, and sulfur of samples. The metal uptake capacities results showed that the modified polysiloxane ligand systems exhibited high capacities for the uptake of divalent metal ions in the following order: Cu2+> Pb2+> Ni2+> Co2+.

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    J.P. Vernet, Impact of Heavy Metals on the Environment (Elsevier, New York, 1992)

    Google Scholar 

  2. 2.

    L. Friber, G.F. Nordberg, B. Vouk, Handbook on the Toxicology of Metals(Elsevier, North-Holland (Biomedical Press, Amsterdam, 1979)

    Google Scholar 

  3. 3.

    G.R. de Castro, I.L. de Alcântara, P.S. Roldan, D.F. Bozano, P.M. Padilha, A.O. Florentino, J.C. Rocha, Mater. Res. 7(2), 329 (2004)

    Article  Google Scholar 

  4. 4.

    C. Airoldi, M.R.M.C. Santos, J. Mater. Sci. 4(9), 1479 (1994)

    CAS  Google Scholar 

  5. 5.

    M.R. Jafari, S.M. Hosseini, S.M. Andani, A.R. Hamidi, S.S. Madaeni, J. Iran. Chem. Soc. 14(5), 1011 (2017)

    Article  CAS  Google Scholar 

  6. 6.

    M. Zendehdel, B. Shoshtari-Yeganeh, G. Cruciani, J. Iranian Chem. Soc. 13(10), 1915 (2016)

    Article  CAS  Google Scholar 

  7. 7.

    M. Borandegi, A. Nezamzadeh-Ejhieh, Colloids Surf. A Physicochem. Eng. Asp. 479, 35 (2015)

    Article  CAS  Google Scholar 

  8. 8.

    A. Masoudi, F. Honarasa, J. Iranian Chem. Soc. 1–7 https://doi.org/10.1007/s13738-018-1318-y (2018)

  9. 9.

    P. Askari, A. Faraji, G. Khayatian, S. Mohebbi, J. Iranian Chem. Soc. 14(3), 613 (2017)

    Article  CAS  Google Scholar 

  10. 10.

    M. Heidari-Chaleshtori, A. Nezamzadeh-Ejhieh, New J. Chem. 39(12), 9396 (2015)

    Article  CAS  Google Scholar 

  11. 11.

    H. Dindar, M.R. Yaftian, M. Pilehvari, S. Rostamnia, J. Iranian Chem. Soc. 12(4), 561 (2015)

    Article  CAS  Google Scholar 

  12. 12.

    J.R. Deans, B.G. Dixon, Water Res 26(4), 469 (1992)

    Article  CAS  Google Scholar 

  13. 13.

    H.M. Freeman, Hazardous Waste Minimization (McGraw-Hill, New York, 1990)

    Google Scholar 

  14. 14.

    I. Liska, J. Chromatogr. A 655, 163 (1993)

    Article  CAS  Google Scholar 

  15. 15.

    J.W. McLaren, A.P. Mykytiuk, S.N. Willie, S.S. Berman, Anal. Chem. 57, 2907 (1985)

    Article  CAS  Google Scholar 

  16. 16.

    R.K Sharma, Design, Pure Appl. Chem. 73(1), 181 (2001)

    Article  CAS  Google Scholar 

  17. 17.

    R.J. Kvitek, J.F. Evans, P.W. Carr, Anal. Chim. Acta 144, 93 (1982)

    Article  CAS  Google Scholar 

  18. 18.

    R. Van Grieken, Anal. Chim. Acta 143, 3 (1982)

    Article  Google Scholar 

  19. 19.

    E. Margui, R. van Grieken, C. Fontas, M. Hidalgo, I. Queralt, Appl. Spectrosc. Rev. 45(3), 179 (2010)

    Article  Google Scholar 

  20. 20.

    P.K. Jal, R.K. Dutta, M. Sudershan, A. Saha, S.N. Bhattacharya, S.N. Chintalapudi, B.K. Mishra, Talanta 55, 233 (2001)

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    I.S. Khatib, R.V. Parish, J. Organomet. Chem.369,9 (1989)

  22. 22.

    I.M. El-Nahhal, R.V. Parish, J. Organomet. Chem. 452, 19 (1993)

    Article  CAS  Google Scholar 

  23. 23.

    I. Ahmed, R.V. Parish, J. Organomet. Chem. 452, 23 (1993)

    Article  CAS  Google Scholar 

  24. 24.

    I.M. El-Nahhal, B.A. El-Shetary, K.A.R. Salib, N.M. El-Ashgar, A.M. El-Hashash, Phosphorus, Sulfur Silicon Relat. Elem. 177(3), 741 (2002)

    CAS  Google Scholar 

  25. 25.

    I.M. El-Nahhal, N.M. El-Ashgar, M.M. Chehimi, Microp. Mesop. Mat. 65(2–3), 299 (2003)

    Article  CAS  Google Scholar 

  26. 26.

    N.M. El-Ashgar, E J. Chem. 5, 107 (2008)

    Article  Google Scholar 

  27. 27.

    S.M. Saadeh, N.M. El-Ashgar, I.M. El-Nahhal, M.M. Chehimi, J. Maquet, F. Babonneau, Appl. Organomet. Chem. 19, 759 (2005)

    Article  CAS  Google Scholar 

  28. 28.

    N.M. El-Ashgar, I.M. El-Nahhal, M.M. Chehimi, F. Babonneau, J. Livage, Monatshefte Für Chemie Monthl 137, 263 (2006)

    Article  CAS  Google Scholar 

  29. 29.

    I.M. El-Nahhal, N.M. El-Ashgar, J. Livage, M.M. Chehimi, F. Babonneau, Mater. Lett. 61, 4553 (2007)

    Article  CAS  Google Scholar 

  30. 30.

    N.M. El-Ashgar, I.M. El-Nahhal, M.M. Chehimi, F. Babonneau, J. Livage, Intern. J Environ. Anal. Chem. 89(14), 1057 (2009)

    Article  CAS  Google Scholar 

  31. 31.

    P. Innocenzi, Y.L. Zub, V.G. Kessler, Sol–gel methods for materials processing, NATO science for peace and security series C: Environmental Security (Springer, 2008)

  32. 32.

    N.M. El-Ashgar, J. Iran. Chem. Soc. 6(4), 823 (2009)

    Article  CAS  Google Scholar 

  33. 33.

    I.M. El-Nahhal, N.M. El-Ashgar, A.A. Abu-Shawish, M.A. Ahmed, F. Babonneau, Phosphorus Sulfur Silicon Relat. Elem. (2015). https://doi.org/10.1080/10426507.2015.1012667

    Article  Google Scholar 

  34. 34.

    N.M. El-Ashgar, M.K. Silmi, I.M. El-Nahhal, M.M. Chehim, F. Babonneau, Silicon (2015). https://doi.org/10.1007/s12633-015-9303-x

  35. 35.

    M.A. Ahmed, A.A. Shaweesh, N.M. El-Ashgar, I.M. El-Nahhal, M.M. Chehimi, F. Babonneau, J Sol–Gel Sci Tech. (2016). https://doi.org/10.1007/s10971-016-3980-9

    Article  Google Scholar 

  36. 36.

    I.M. El-Nahhal, N.M. El-Ashgar, J. Organomet. Chem. 692, 2861 (2007)

    Article  CAS  Google Scholar 

  37. 37.

    I.M. El-Nahhal, J.J. Yang, I.S. Chuang, G.E. Maciel, J. Non. Cryst. Solids 208, 105 (1996)

    Article  CAS  Google Scholar 

  38. 38.

    J.J. Yang, I.M. El-Nahhal, I.S. Chuang, G.E. Maciel, J. Non-Cryst. Solids 212(2–3), 281 (1997)

    Article  CAS  Google Scholar 

  39. 39.

    I.M. El-Nahhal, Phosphorus Sulfur Silicon Relat. Elem. 162, 245 (2000)

    Article  CAS  Google Scholar 

  40. 40.

    I.M. El-Nahhal, N.M. El-Ashgar, J. of Dispersion Science & Technology 27(7), 915 (2006)

    Article  CAS  Google Scholar 

  41. 41.

    N.M. El-Ashgar, I.M. El-Nahhal, M.M. Chehimi, F. Babonneau, Livage, J. J. Hazard. Mater. 187(3), 392 (2012)

    CAS  Google Scholar 

  42. 42.

    P.R. Davornic, R.W. Lenz, High Temperature Siloxane Elastomers (Huthing and Wepf Verlag, Basel, 1990)

    Google Scholar 

  43. 43.

    E.F. Vansant, P. Van Der Voort, K.C. Vrancken, Studies in Surface Science Catalysis (Elsevier, Amsterdam, 1995)

    Google Scholar 

  44. 44.

    A.M. Klonkowski, K. Koehler, C.W. Schlaepfer, J. Mater. Chem. 3(1), 105 (1993)

    Article  CAS  Google Scholar 

  45. 45.

    A.M. Klonkowski, K. Koehler, T. Widernik, B. Grobelna, J. Mater. Chem. 6, 579 (1996)

    Article  CAS  Google Scholar 

  46. 46.

    A.M. Klonkowski, T. Widernik, B. Grobelna, J. Sol–Gel Sci. Tech. 20, 161 (2001)

    Article  CAS  Google Scholar 

  47. 47.

    J.D. Jovanovic, M.N. Govedarica, P.R. Dvornic, I.G. Popovic, Polym. Degrad. & Stab. 61, 87 (1998)

    Article  CAS  Google Scholar 

  48. 48.

    T. Sakpal, A. Kumar, S. Kamble, R. Kumar, Chemical Engineering and Process Development (Division CSIR-National Chemical Laboratory, Pune 411 008, India, 2012)

  49. 49.

    M.E. Mahmoud, Anal. Lett. 29(10), 1791 (1996)

    Article  CAS  Google Scholar 

  50. 50.

    H. Irving, R.J.P. Williams, Nature 162, 746 (1948)

    Article  CAS  Google Scholar 

  51. 51.

    R.G. Pearson, J. Am. Chem. Soc. 85, 3533 (1963)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the French Government for the Al-Maqdisi grant jointly with the Palestinian Ministry of Higher Education.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nizam M. El-Ashgar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

El-Ashgar, N.M., El-Nahhal, I.M., Ahmed, M.A. et al. Synthesis, characterization, and metal uptake of multiple functionalized immobilized-polysiloxane diamine-thiol chelating ligand derivatives. J IRAN CHEM SOC 15, 2325–2338 (2018). https://doi.org/10.1007/s13738-018-1421-0

Download citation

Keywords

  • Metal uptake
  • Silica-based solid supports
  • Immobilized polysiloxanes
  • Sol–gel
  • Template synthesis
  • Multiple functionalized polysiloxanes