Skip to main content
Log in

Coordination polymers based on µ2η11 and µ2η22 bridging mode of pyridyl carboxylate: ionic liquid-induced hydrothermal synthesis, structural and thermogravimetric analysis

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Two coordination polymers of formula [Cu(2-picolinate)(nicotinate)]n (1), [Mn(2-picolinate)2]n (2), using pyridine-2/3-carboxylic acid and metal salt acetate, have been synthesized hydrothermally at 120 °C for 48 h in presence of ionic liquid tetraethylammonium hydroxide (25% aqueous solution). Although all reported complexes were synthesized in same experimental conditions, they show diversity in their structural features, 2 crystallize in monoclinic crystal system where as 1 shows higher symmetry space group, orthorhombic. The 3D structure in 1 is based on anti-syn Cu–O–C–O–Cu chain with µ2η11 coordinative mode of carboxylate ion and ligand bridging through carboxylate oxygen and pyridyl nitrogen of nicotinate ion while 2D sheet structure in 2 is due to Mn–O–Mn chain involving µ2η22 coordinative mode together with syn-anti Mn–O–C–O–Mn chain via µ2η11 coordinative mode of carboxylate ion of picolinate ion only. It is observed that these chains are the structure factors for dimensionality of reported CPs. Both coordination polymers are insoluble in almost all organic solvents as well as in water and show good thermal stability between 280 and 450 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Y.N. Gong, Y.L. Huang, L. Jiang, T.B. Lu, Inorg. Chem. 53, 9457 (2014)

    Article  CAS  PubMed  Google Scholar 

  2. R.B. Getman, Y.S. Bae, C.E. Wilmer, R.Q. Snurr, Chem. Rev. 112, 703 (2012)

    Article  CAS  PubMed  Google Scholar 

  3. J.R. Li, J. Sculley, H.C. Zhou, Chem. Rev. 112, 869 (2012)

    Article  CAS  PubMed  Google Scholar 

  4. L.J. Murray, M. Dincă, J.R. Long, Chem. Soc. Rev. 38, 1294 (2009)

    Article  CAS  PubMed  Google Scholar 

  5. S. Xiang, X. Wu, J. Zhang, R. Fu, S. Hu, X. Zhang, J. Am. Chem. Soc. 127, 16352 (2005)

    Article  CAS  PubMed  Google Scholar 

  6. M. Eddaoudi, J. Kim, N. Rossi, D. Vodak, J. Wachter, O.M. O’Keeffe, Yaghi, Science 295, 469 (2002)

    Article  CAS  PubMed  Google Scholar 

  7. K.K. Bania, G.V. Karunakar, K. Goutham, R.C. Deka, Inorg. Chem. 52, 8017 (2013)

    Article  CAS  PubMed  Google Scholar 

  8. H.K. Chae, D.Y. Siberio-Perez, J. Kim, Y. Go, M. Eddaoudi, A.J. Matzger, M. O’Keeffe, O.M. Yaghi, Nature 427, 523 (2004)

    Article  CAS  PubMed  Google Scholar 

  9. J. Bi, L. Kong, Z. Huang, J. Liu, Inorg. Chem. 47, 4564 (2008)

    Article  CAS  PubMed  Google Scholar 

  10. C.N.R. Rao, A. Rangnathan, V.R. Pedireddi, A.R. Raju, Chem. Commun. 39 (2000)

  11. W. Lin, L. Ma, O.R. Evans, Chem. Commun. 22, 2264 (2000)

    Google Scholar 

  12. W. Lin, Z. Wang, L. Ma, J. Am. Chem. Soc. 121, 11249 (1999)

    Article  CAS  Google Scholar 

  13. H.K. Chae, D.Y. Siberio-Perez, J. Kim, Y. Go, M. Eddaoudi, A.J. Matzger, M. O’Keeffe, O.M. Yaghi, Nature 378, 703 (1995)

    Article  Google Scholar 

  14. G.S. Yang, C.B. Liu, H. Liu, J. Robbins, Z.J. Zhang, H.S. Yin, H.L. Wen, Y.H. Wang, J. Solid State Chem. 225, 391 (2015)

    Article  CAS  Google Scholar 

  15. W.B. Chen, Z.X. Li, Z.J. Ouyang, W.N. Lin, L. Yang, W. Dong, RSC Adv. 4, 61104 (2014)

    Article  CAS  Google Scholar 

  16. J.Z. Qiao, M.S. Zhan, T.P. Hu, RSC Adv. 4, 62285 (2014)

    Article  CAS  Google Scholar 

  17. M.J. Murphy, P.M. Usov, F.J. Rizzuto, C.J. Kepert, D.M. D’Aessandro, New J. Chem. 38, 5856 (2014)

    Article  CAS  Google Scholar 

  18. M. Sanselme, J.M. Grenèche, M. Fiou-Cavllec, G. Férey, Chem. Commun. 2172 (2002)

  19. B.I. Chen, M. Eddaoudi, S.T. Hyde, M. O’Keeffe, O.M. Yaghi, Science 291, 1021 (2001)

    Article  CAS  PubMed  Google Scholar 

  20. Z. Majeed, G.E. Kostakis, Y. Lan, A.K. Powell, Dalton Trans. 40(45), 12210 (2011)

    Article  CAS  PubMed  Google Scholar 

  21. Y. Luo, K. Bernot, G. Calvez, S. Freslon, C. Daiguebonne, O. Guillou, N. Kerbellec, T. Roisnel, CrystEngComm, 15, 1882 (2013)

    Article  CAS  Google Scholar 

  22. Y. Zhang, M. Bhadbhade, N. Scales, I. Karatchevtseva, J.R. Price, K. Lu, G.R. Lumpkin, J. Solid State Chem. 219, 1 (2014)

    Article  CAS  Google Scholar 

  23. C.-J. Li, W. Li, Z.S. Meng, M.-X. Peng, M.-M. Yang, M.-L. Tong, Aust. J. Chem. 62, 1607 (2009)

    Article  CAS  Google Scholar 

  24. Y.-C. Chen, F.-S. Guo, Y.-Z. Zheng, J.-L. Liu, J.-D. Leng, R. Tarasenko, M. Orendáč, J. Prokleška, V. Sechovský, M.-L. Tong, Chem. Eur. J. 19, 13504 (2013)

    Article  CAS  PubMed  Google Scholar 

  25. Y.-Z. Zheng, M. Evangelisti, R.E.P. Winpenny, Angew. Chem. Int. Ed. 50, 3692 (2011)

    Article  CAS  Google Scholar 

  26. A.P. Milanov, R.W. Seidel, D. Barreca, A. Gasparotto, M. Winter, J. Feydt, S. Irsen, H.-W. Becker, A. Devi, Dalton Trans. 40, 62 (2011)

    Article  CAS  PubMed  Google Scholar 

  27. X.-J. Zhang, Y.-H. Xing, Z. Sun, J. Han, Y.-H. Zhang, M.-F. Ge, S.-Y. Niu, Cryst. Growth Des. 7, 2041 (2007)

    Article  CAS  Google Scholar 

  28. S. Zhang, Y. Cao, H. Zhanga, X. Chai, Y. Chen, J. Solid State Chem. 181, 399 (2008)

    Article  CAS  Google Scholar 

  29. D. Huang, W. Wang, X. Zhang, C. Chen, F. Chen, Q. Liu, D. Liao, L. Li, L. Sun, Eur. J. Inorg. Chem. 1454 (2004)

  30. G.M. Sheldrick, SADABS, Program for Empirical Adsorption Correction of Area Detector Data (University of Gottingen, Germany, 1997)

    Google Scholar 

  31. G.M. Sheldrick, Acta Crystallogr. Sect. A 46, 467 (1990)

    Article  Google Scholar 

  32. G.M. Sheldrick, SHELXL-97, Programme for the Refinement of Crystal Structure (University of Gottingen, Germany, 1997)

    Google Scholar 

Download references

Acknowledgements

Dr. Kafeel Ahmad Siddiqui is thankful to Director and Dean Research and Consultancy, National Institute of Technology Raipur, India, for award of a “Research Seed Grant Project” (Sanction Order No. NITRR/Dean(R&C)/2017/8300 dated 23/05/2017) to support “Crystal Engineering Research”. Dr. Prem Lama gratefully acknowledges financial support from the Department of Science and Technology (DST), New Delhi under DST-INSPIRE Faculty award [DST/INSPIRE/04/2017/000249].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kafeel Ahmad Siddiqui.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddiqui, K.A., Bharati, A.K. & Lama, P. Coordination polymers based on µ2η11 and µ2η22 bridging mode of pyridyl carboxylate: ionic liquid-induced hydrothermal synthesis, structural and thermogravimetric analysis. J IRAN CHEM SOC 15, 2315–2324 (2018). https://doi.org/10.1007/s13738-018-1420-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-018-1420-1

Keywords

Navigation