Advertisement

Journal of the Iranian Chemical Society

, Volume 15, Issue 10, pp 2259–2270 | Cite as

Design, synthesis, and application of 1H-imidazol-3-ium trinitromethanide {[HIMI]C(NO2)3} as a recyclable nanostructured ionic liquid (NIL) catalyst for the synthesis of imidazo[1,2-a]pyrimidine-3-carbonitriles

  • Meysam YarieEmail author
  • Mohammad Ali ZolfigolEmail author
  • Saeed Baghery
  • Abbas KhoshnoodEmail author
  • Diego A. AlonsoEmail author
  • Mehdi Kalhor
  • Yadollah Bayat
  • Asiye Asgari
Original Paper
  • 125 Downloads

Abstract

In this study, 1H-imidazol-3-ium trinitromethanide (1) {[HIMI]C(NO2)3} as a green and recyclable catalyst based on nanostructure ionic liquid (NIL) was designed, synthesized, fully characterized by various analysis techniques, and applied as catalyst for the synthesis of 4-amino-1,2-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-3-carbonitrile derivatives via one-pot three-component condensation reaction. The reaction tolerates a wide range of electron-donating and electron-withdrawing substituents on aldehydes with malononitrile and 2-aminobenzimidazole at 50 °C under neat conditions. The described reaction is compatible with the green chemistry disciplines and their main advantages are short reaction time, high yields, simplicity of product isolation, and clean reaction profile. Additionally, the NIL catalyst (1) {[HIMI]C(NO2)3} can be readily recovered in the reaction vessel using a mixture of EtOAc/H2O (1:1) and reused for four consecutive runs without a significant loss in catalytic activity. The present study can open up a new and promising insight in the course of rational design, synthesis and applications of nanostructured task-specific ionic liquids (NTSILs) for numerous green purposes.

Keywords

Multicomponent reactions (MCRs) Knoevenagel condensation Nanostructured ionic liquid (NIL) Solvent-free 1H-Imidazol-3-ium trinitromethanide {[HIMI]C(NO2)3

Notes

Acknowledgements

We thank Bu-Ali Sina University, Iran National Science Foundation (INSF) (Grant number: 940124), National Elites Foundation, University of Alicante (VIGROB-173), and the Spanish Ministerio de Economíay Competitividad (CTQ2015-66624-P) for financial support to our research groups.

Supplementary material

13738_2018_1415_MOESM1_ESM.pdf (4.4 mb)
Supplementary material 1 (PDF 4541 KB)

References

  1. 1.
    T. Welton, Chem. Rev. 99, 2071 (1999)CrossRefPubMedGoogle Scholar
  2. 2.
    P. Wasserscheid, W. Keim, Angew. Chem. Int. Ed. 39, 3772 (2000)CrossRefGoogle Scholar
  3. 3.
    J. Dupont, R.F. de Souza, P.A.Z. Suarez, Chem. Rev. 102, 3667 (2002)CrossRefPubMedGoogle Scholar
  4. 4.
    H. Olivier-Bourbigou, L. Magna, J. Mol. Catal. A Chem. 182–183, 419 (2002)CrossRefGoogle Scholar
  5. 5.
    P.J. Dyson, Transit. Met. Chem. 27, 353 (2002)CrossRefGoogle Scholar
  6. 6.
    V.I. Pârvulescu, C. Hardacre, Chem. Rev. 107, 2615 (2007)CrossRefPubMedGoogle Scholar
  7. 7.
    J. Durand, E. Teuma, M. Gómez, C. R. Chim. 10, 152 (2007)CrossRefGoogle Scholar
  8. 8.
    P. Wasserscheid, T. Welton, Ionic Liquids in Synthesis, Wiley-VCH Verlag: Stuttgart, (2002)Google Scholar
  9. 9.
    R. Hayes, G.G. Warr, R. Atkin, Chem. Rev. 115, 6357 (2015)CrossRefPubMedGoogle Scholar
  10. 10.
    N. Isambert, M.M.S. Duque, J.C. Plaquevent, Y. Genisson, J. Rodriguez, T. Constantieux, Chem. Soc. Rev. 40, 1347 (2011)CrossRefPubMedGoogle Scholar
  11. 11.
    K.L. Luska, P. Migowski, W. Leitner, Green Chem. 17, 3195 (2015)CrossRefGoogle Scholar
  12. 12.
    A. Domling, Chem. Rev. 16, 17 (2006)CrossRefGoogle Scholar
  13. 13.
    A. Domling, I. Ugi, Angew. Chem. Int. Ed. 39, 3168 (2000)CrossRefGoogle Scholar
  14. 14.
    J. Zhu, H. Bienayme, Reactions Multicomponent, (Wiley-VCH, Weinheim, 2005)CrossRefGoogle Scholar
  15. 15.
    D.M. D’Souza, T.J.J. Mueller, Chem. Soc. Rev. 36, 1095 (2007)CrossRefPubMedGoogle Scholar
  16. 16.
    D. Tejedor, F. Garcia-Tellado, Chem. Soc. Rev. 36, 484 (2007)CrossRefPubMedGoogle Scholar
  17. 17.
    N.R. Candeias, F. Montalbano, P.M.S.D. Cal, P.M.P. Gois, Chem. Rev. 110, 6169 (2010)CrossRefPubMedGoogle Scholar
  18. 18.
    K. Wang, D. Kim, A.J. Domling, J. Comb. Chem. 12, 111 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    L.F. Tietze, Domino Reactions: Concepts for Efficient Organic Synthesis (Wiley-VCH, Weinheim, 2004)Google Scholar
  20. 20.
    A. Dömling, W. Wang, K. Wang, Chem. Rev. 112, 3083 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    M. Shiri, Chem. Rev. 112, 3508 (2012)CrossRefPubMedGoogle Scholar
  22. 22.
    R. Maleki, S. Rahimi, Maleki, J. Iran. Chem. Soc. 12, 191 (2015)CrossRefGoogle Scholar
  23. 23.
    M. Maleki, R. Aghaei, Paydar, J. Iran. Chem. Soc. 14, 485 (2017)CrossRefGoogle Scholar
  24. 24.
    T.J.J. Muller, Science of Synthesis: Multicomponent Reactions (Georg Thieme, Stuttgart, 2014)Google Scholar
  25. 25.
    K. Kubo, Y. Inada, Y. Kohara, Y. Sugiura, M. Ojima, K. Itoh, Y. Furukawa, K. Nishikawa, T. Nakat, J. Med. Chem. 36, 1772 (1993)CrossRefPubMedGoogle Scholar
  26. 26.
    M.S. Bartlett, T.D. Edlind, M.M. Durkin, M.M. Shaw, S.F. Queener, J.W. Smith, Antimicrob. Agents Chemother. 36, 779 (1992)CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    R. Paramashivappa, P. Phani Kumar, P.V. Subba Rao, A. Srinivasa Rao, Bioorg. Med. Chem. 13, 657 (2003)CrossRefGoogle Scholar
  28. 28.
    A.N. Dhage, N.S. Jashi, S.G. Wadokar, A.V. Kasture, Indian Drugs 23, 601 (1986)Google Scholar
  29. 29.
    E.I. Elnima, M. Uppal Zubair, A.A. Al-Badr, Antimicrob. Agents Chemother. 19, 29 (1981)CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    S. Ramalingan, S. Balasubramanian, Kabilan, Synth. Commun. 34, 1105 (2004)CrossRefGoogle Scholar
  31. 31.
    L. Hu, Z. Zhan, M. Lei, L. Hu, J. Chem. Res. 36, 738 (2012)CrossRefGoogle Scholar
  32. 32.
    X. Shang, M. Geng, L. Wu, Asian J. Chem. 24, 515 (2012)Google Scholar
  33. 33.
    M. Veeranarayana Reddy, J. Oh, Y. Tae Jeong, C. R. Chim. 17, 484 (2014)CrossRefGoogle Scholar
  34. 34.
    A. Shaabani, A. Rahmati, M. Hossein Rezayan, Z. Darvishi, A. Badri, Sarvari, QSAR Comb. Sci. 26, 973 (2007)CrossRefGoogle Scholar
  35. 35.
    Z.M. Nofal, H.H. Fahmy, H.S. Mohamed, Arch. Pharm. Res. 25, 250 (2002)CrossRefPubMedGoogle Scholar
  36. 36.
    L. Wu, F. Yan, C. Yang, Bull. Chem. Soc. Ethiop. 24, 417 (2010)CrossRefGoogle Scholar
  37. 37.
    A.R. Karimi, F. Bayat, Lett. Org. Chem. 8, 631 (2011)CrossRefGoogle Scholar
  38. 38.
    B. Insuasty, A. Salcedo, R. Abonia, J. Quiroga, M. Nogueras, A. Sánchez, Heterocycl. Commun. 8, 287 (2002)Google Scholar
  39. 39.
    S.A. Komykhov, K.S. Ostras, A.R. Kostanyan, S.M. Desenko, V.D. Orlov, H. Meier, J. Heterocycl. Chem. 42, 1111 (2005)CrossRefGoogle Scholar
  40. 40.
    B. Insuasty, R. Salcedo, J. Abonia, A. Quiroga, Sanchez, Heterocycl. Commun. 38, 287 (2002)CrossRefGoogle Scholar
  41. 41.
    G. Liu, Q. Shao, S. Tu, L. Cao, C. Li, D. Zhou, B. Han, J. Heterocyclic Chem. 45, 1127 (2008)CrossRefGoogle Scholar
  42. 42.
    A. Nowicka, H. Liszkiewicz, W.P. Nawrocka, J. Wietrzyk, K. Kempińska, A. Dryś, Cent. Eur. J. Chem. 12, 1047 (2014)CrossRefGoogle Scholar
  43. 43.
    A. Dandia, R. Singh, A.K. Jain, D. Singh, Synth. Commun. 38, 3543 (2008)CrossRefGoogle Scholar
  44. 44.
    M.A. Zolfigol, A. Khazaei, A.R. Moosavi-Zare, A. Zare, H.G. Kruger, Z. Asgari, V. Khakyzadeh, M. Kazem-Rostami, J. Org. Chem. 77, 3640 (2012)CrossRefPubMedGoogle Scholar
  45. 45.
    M.A. Zolfigol, A. Khazaei, A.R. Moosavi-Zare, A. Zare, Z. Asgari, V. Khakyzadeh, A. Hasaninejad, J. Ind. Eng. Chem. 19, 721 (2013)CrossRefGoogle Scholar
  46. 46.
    M.A. Zolfigol, H. Vahedi, S. Azimi, A.R. Moosavi-Zare, Synlett. 24, 1113 (2013)CrossRefGoogle Scholar
  47. 47.
    A.R. Moosavi-Zare, M.A. Zolfigol, O. Khaledian, V. Khakyzadeh, M.D. Farahaniand, H.G. Kruger, New J. Chem. 38, 2342 (2014)CrossRefGoogle Scholar
  48. 48.
    A.R. Moosavi-Zare, M.A. Zolfigol, V. Khakyzadeh, C. Böttcher, M.H. Beyzavi, A. Zare, A. Hasaninejad, R. Luque, J. Mater. Chem. A. 2, 770 (2014)CrossRefGoogle Scholar
  49. 49.
    M.A. Zolfigol, S. Baghery, A.R. Moosavi-Zare, S.M. Vahdat, RSC Adv. 5, 32933 (2015)CrossRefGoogle Scholar
  50. 50.
    M.A. Zolfigol, S. Baghery, A.R. Moosavi-Zare, S.M. Vahdat, H. Alinezhad, M. Norouzi, RSC Adv. 5, 45027 (2015)CrossRefGoogle Scholar
  51. 51.
    M.A. Zolfigol, S. Baghery, A.R. Moosavi-Zare, S.M. Vahdat, H. Alinezhad, M. Norouzi, RSC Adv. 4, 57662 (2014)CrossRefGoogle Scholar
  52. 52.
    M.A. Zolfigol, F. Afsharnadery, S. Baghery, S. Salehzadeh, F. Maleki, RSC Adv. 5, 75555 (2015)CrossRefGoogle Scholar
  53. 53.
    M.A. Zolfigol, S. Baghery, A.R. Moosavi-Zare, S.M. Vahdat, J. Mol. Catal. A. Chem. 409, 216 (2015)CrossRefGoogle Scholar
  54. 54.
    H. Sharghi, A. Khoshnood, M.M. Doroodmand, R. Khalifeh, J. Heterocycl. Chem. 53, 164 (2016)CrossRefGoogle Scholar
  55. 55.
    N. Isambert, M.M. Sanchez Duque, J.C. Plaquevent, Y. Génisson, J. Rodriguez, T. Constantieux, Chem. Soc. Rev. 40, 1347 (2011)CrossRefPubMedGoogle Scholar
  56. 56.
    Y. Huang, H. Gao, B. Twamley, J.M. Shreeve, Eur. J. Inorg. Chem. 2007, 2025 (2007)CrossRefGoogle Scholar
  57. 57.
    M.A. Bodaghifard, Z. Faraki, A.R. Karimi, Curr. Org. Chem. 20, 1648 (2016)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  1. 1.Department of Organic Chemistry, Faculty of ChemistryBu-Ali Sina UniversityHamadanIran
  2. 2.Organic Synthesis Institute, and Organic Chemistry DepartmentAlicante UniversityAlicanteSpain
  3. 3.Department of ChemistryPayame Noor UniversityTehranIran
  4. 4.Faculty of Chemistry and Chemical EngineeringMalek Ashtar University of TechnologyTehranIran

Personalised recommendations