Skip to main content
Log in

Biological aspects of Schiff base–metal complexes derived from benzaldehydes: an overview

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Schiff bases are stable imines containing C=N, where N is bonded to an alkyl or aryl group, but not with hydrogen and are prepared by condensation of aliphatic or aromatic primary amine with carbonyl compounds. They have the general formula R1R2C = NR3, where R3 ≠ H. The presence of the basic donor N atom and the stability of the imine function render Schiff bases as the most favored ligands that have the ability to stabilize metal ions in different oxidation states. The chelating environment in a Schiff base profoundly influences the electron distribution in the coordination sphere of metal in a complex and thereby regulates the property of the compounds in a big way. The structural diversity in some of the metal complexes with multidentate Schiff base ligands has triggered a wide range of applications of this class of compounds in sensors, catalysis, biology, medicines, and photonics. This review compiles the synthesis and biological activities (antimicrobial, antioxidant, anticancer, antitubercular, DNA interaction studies) of benzaldehyde-based Schiff bases and their metal complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

Abbreviations

DMSO:

Dimethyl sulfoxide

DMF:

Dimethylformamide

Fig:

Figure

MIC:

Minimum inhibition concentration

MBC:

Minimum bactericidal concentration

MFC:

Minimum fungicidal concentration

UV–Vis:

Ultraviolet–visible

IR:

Infrared

FTIR:

Fourier transform infrared

NMR:

Nuclear magnetic resonance

XRD:

X-ray diffraction

ROS:

Reactive oxygen species

DPPH:

2,2′-Diphenyl-1-picrylhydrazyl

BHT:

Butylated hydroxytoluene

ABTS:

2,2′-Azinobis(3-ethylbenzothiazoline-6-sulphonic acid)

BSA:

Bovine serum albumin

CT DNA:

Calf thymus DNA

ESR:

Electron spin resonance

SEM:

Scanning electron microscope

EDX:

Energy-dispersive X-ray

SRB:

Sulfo-rhodamine-B stain

Salen:

Salicylaldehyde ethylenediamine

HOMO:

Highest occupied molecular orbital

LUMO:

Lowest unoccupied molecular orbital

PPh3:

Triphenylphosphine

MIC50:

Minimal inhibitory concentration (50%)

DNA:

Deoxyribose nucleic acid

TB:

Tuberculosis

MDR:

Multidrug resistant

IC50:

Half-maximal inhibitory concentration

NHDF:

Normal human dermal fibroblast

MTT:

Microculture tetrazolium test

H2O2 :

Hydrogen peroxide

DFT:

Density functional theory

TDDFT:

Time-dependent density functional theory

ICT:

Intramolecular charge transfer

CHEF:

Chelation-enhanced fluorescence

References

  1. G. Bringmann, M. Dreyer, J.H. Faber, P.W. Dalsgaard, D. Staerk, J.W. Jaroszewski, Ancistrotanzanine C and related 5,10- and 7,30-coupled naphthylisoquinoline alkaloids from Ancistrocladus tanzaniensis. J. Nat. Prod. 67(5), 743–750 (2004)

    Article  CAS  PubMed  Google Scholar 

  2. O. de Souza, F.C.S. Galetti, C.L. Silva, B. Bicalho, M.M. Parma, S.F. Fonseca, Antimycobacterial and cytotoxicity activity of synthetic and natural compounds. Quim. Nova 30(7), 1563–1568 (2007)

    Article  Google Scholar 

  3. Z. Guo, R. Xing, S. Liu, Z. Zhong, X. Ji, L. Wang, Antifungal properties of Schiff bases of chitosan, N-substituted chitosan and quaternized chitosan. Carbohydr. Res. 342(10), 1329–1332 (2007)

    Article  CAS  PubMed  Google Scholar 

  4. D.N. Dhar, C.L. Taploo, Schiff bases and their applications. J. Sci. Ind. Res. 41(8), 501–506 (1982)

    CAS  Google Scholar 

  5. S. Li, S. Chen, S. Lei, H. Ma, R. Yu, D. Liu, Investigation on some Schiff bases as HCl corrosion inhibitors for copper. Corros. Sci. 41(7), 1273–1287 (1999)

    Article  CAS  Google Scholar 

  6. P.G. Cozzi, Metal-salen Schiff base complexes in catalysis: practical aspects. Chem. Soc. Rev. 33, 410–421 (2004)

    Article  CAS  PubMed  Google Scholar 

  7. R.K. Mohapatra, Synthesis and characterization of UO2 VI, ThIV and VOIV complexes with a Schiff base and their derivatives with chloroacetic acid. J. Indian Chem. Soc. 87, 1251–1255 (2010)

    CAS  Google Scholar 

  8. D.C. Dash, A. Mahapatra, P. Naik, S.K. Naik, R.K. Mohapatra, S. Ghosh, Synthesis and characterization of UO2 2+, ZrO2+ and Th4+ complexes with 3-(p-substituted aryl)-2-thiohydantoin. J. Indian Chem. Soc. 85, 595–599 (2008)

    CAS  Google Scholar 

  9. D.C. Dash, R.K. Mohapatra, S. Ghosh, P. Naik, Synthesis and characterization of homobinuclear complexes of UO2(VI), Th(IV), ZrO(IV) and VO(IV) with Schiff base monohydrazone derivatives. J. Korean Chem. Soc. 52(5), 468–475 (2008)

    Article  CAS  Google Scholar 

  10. H.L. Singh, J.B. Singh, Synthesis and characterization of new lead(II) complexes of Schiff bases derived from amino acids. Res. Chem. Intermed. 39, 1997–2009 (2013)

    Article  CAS  Google Scholar 

  11. F. Baquero, Gram-positive resistance: challenge for the development of new antibiotics. J Antimicrob. Chemother. 39(Suppl. A), 1–6 (1997)

    Article  CAS  PubMed  Google Scholar 

  12. M.N. Alekshun, S.B. Levy, Molecular mechanisms of antibacterial multidrug resistance. Cell. 128(6), 1037–1050 (2007)

    Article  CAS  PubMed  Google Scholar 

  13. L.B. Rice, Unmet medical needs in antibacterial therapy. Biochem. Pharmacol. 71(7), 991–996 (2006)

    Article  CAS  PubMed  Google Scholar 

  14. S.A. Matar, W.H. Talib, M.S. Mustafa, M.S. Mubarak, M.A. AlDamen, Synthesis, characterization, and antimicrobial activity of Schiff bases derived from benzaldehydes and 3,3′-diaminodipropylamine. Arab. J. Chem. 8, 850–857 (2015)

    Article  CAS  Google Scholar 

  15. S. Zhong-Hua, S. Yan-Xia, Y. Ming-Yan, S. Zhao-Hui, W. Jian-Quan, T. Cheng-Xia, L. Xing-Hai, L. Bao-Ju, Z. Wei-Guang, Synthesis, crystal structure, DFT studies and biological activity of a novel Schiff base containing Triazolo[4,3-a]pyridine moiety. Chin. J. Struct. Chem. 35(3), 457–464 (2016)

    Google Scholar 

  16. H. Tahtaci, M. Er, T. Karakurt, A. Onaran, Synthesis, Structural characterization, and biological evaluation of novel substituted 1,3-thiazole derivatives containing Schiff bases. J. Heterocycl. Chem. 54, 183–193 (2017)

    Article  CAS  Google Scholar 

  17. S. Prasad, V. Radhakrishna, T.K. Ravi, Synthesis, spectroscopic and antibacterial studies of some Schiff bases of 4-(4-bromophenyl)-6-(4-chlorophenyl)-2-aminopyrimidine. Arab. J. Chem. (2016). https://doi.org/10.1016/j.arabjc.2016.03.003

    Article  Google Scholar 

  18. E.M. Zayed, M.A. Zayed, Synthesis of novel Schiff’s bases of highly potential biological activities and their structure investigation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 143, 81–90 (2015)

    Article  CAS  Google Scholar 

  19. N.D. Amnerkar, B.A. Bhongade, K.P. Bhusari, Synthesis and biological evaluation of some4-(6-substituted-1,3-benzothiazol-2-yl)amino-1,3-thiazole-2-amines and their Schiff bases. Arab. J. Chem. 8, 545–552 (2015)

    Article  CAS  Google Scholar 

  20. D.H. Soliman, W.M. Eldehna, H.A. Ghabbour, M.M. Kabil, M.M. Abdel-Aziz, H.A.-K. Abdel-Aziz, Novel 6-phenylnicotinohydrazide derivatives: design, synthesis and biological evaluation as a novel class of antitubercular and antimicrobial agents. Biol. Pharm. Bull. 40, 1883–1893 (2017)

    Article  CAS  PubMed  Google Scholar 

  21. K. Abid, S. Al-Bayati, A. Rasheed, Synthesis, characterization, thermal study and biological evaluation of transition metal complexes supported by ONNNO–Pentadentate Schiff base ligand. Am. J. Chem. 6(1), 1–7 (2016)

    CAS  Google Scholar 

  22. R.K. Agarwal, R.K. Garg, S.K. Sindhu, Synthesis and magneto-spectral investigations of some six and nine coordinated complexes of lanthanides(III) derived from 4[N-(2′-hydroxy-1′-naphthalidene) amino]antipyrinethiosemicarbazone. J. Iran. Chem. Soc. 2(3), 203–211 (2005)

    Article  CAS  Google Scholar 

  23. K.K. Abid, R.H. Al-Bayati, A.A. Faeq, Transition metal complexes of new N-amino quinolone derivative; synthesis, characterization, thermal study and antimicrobial properties. Am. J. Chem. 6(2), 29–35 (2016)

    CAS  Google Scholar 

  24. J. Abdulghani, R.K. Hussain, Synthesis and characterization of Schiff base metal complexes derived from cefotaxime with 1H-indole-2,3-dione (Isatin) and 4-N,N-dimethyl-aminobenzaldehyde. Open J. Inorg. Chem. 5, 83–101 (2015)

    Article  CAS  Google Scholar 

  25. M. Mahmoud, T. Numan, O. Obaidi, Synthetic and characterization of some new Schiff bases complexes with Co(II), Ni(II), Cu(II) and Pd(II) ions., J. Al-Nahrain Univ. Sci. 16(1), 82–63 (2013)

    Google Scholar 

  26. G. Koz, H. Kaya, D. Astley, D. Yasa, S.T. Astley, Synthesis, characterization and antimicrobial screening of Ni(II), Cu(II) and Co(II) complexes of some Schiff base ligands Derived from 5-aminouracil. Gazi Univ. J. Sci. 24(3), 407–413 (2011)

    Google Scholar 

  27. M. Kurtoğlu, F. Purtaş, S. Serin, Synthesis and antimicrobial activity of new Schiff bases having the –SiOR Group (R=CH3 or CH2CH3), and their transition metal complexes. Trans. Met. Chem. 30(8), 1042–1047 (2005)

    Article  CAS  Google Scholar 

  28. S. Gaballa, M.S. Asker, A.S. Barakat, S.M. Teleb, Synthesis, characterization and biological activity of some platinum (II) complexes with Schiff bases derived from salicylaldehyde, 2-furaldehyde and phenylenediamine. Spectrochim. Acta. 67A, 114–121 (2007)

    Article  CAS  Google Scholar 

  29. A.A. El-Sherif, T.M.A. Eldebss, Synthesis, spectral characterization, solution equilibria, in vitro antibacterial and cytotoxic activities of Cu(II), Ni(II), Mn(II), Co(II) and Zn(II) complexes with Schiff base derived from 4-bromosalicylaldehyde and 2-aminomethylthiophene. Spectrochim. Acta 79A, 1803–1814 (2011)

    Article  CAS  Google Scholar 

  30. L.H. Abdel-Rahman, R.M. El-Khatib, L.A.E. Nassr, A.M. Abu-Dief, M. Ismael, A.A. Seleem, Metal based pharmacologically active agents: synthesis, structural characterization, molecular modeling, CT-DNA binding studies and in vitro antimicrobial screening of iron(II) bromosalicylidene amino acid chelates. Spectrochim. Acta 117A, 366–378 (2014)

    Article  CAS  Google Scholar 

  31. L.H. Abdel-Rahman, R.M. El-Khatib, L.A.E. Nassr, A.M. Abu-Dief, F. El-DinLashin, Design, characterization, teratogenicity testing, antibacterial, antifungal and DNA interaction of few high spin Fe(II) Schiff base amino acid complexes. Spectrochim. Acta 111A, 266–276 (2013)

    Article  CAS  Google Scholar 

  32. M. Shaker, L.A.E. Nassr, M.S.S. Adam, I.M.A. Mohamed, Synthesis, characterization and spectrophotometric studies of seven novel antibacterial hydrophilic iron (II) Schiff base amino acid complexes. J. Korean Chem. Soc. 5, 560–567 (2013)

    Article  CAS  Google Scholar 

  33. M. Abu-Dief, L.A.E. Nassr, Tailoring, physicochemical characterization, antibacterial and DNA binding mode studies of Cu(II) Schiff bases amino acid bioactive agents incorporating 5-bromo-2-hydroxybenzaldehyde. J. Iran. Chem. Soc. 12, 943–955 (2015)

    Article  CAS  Google Scholar 

  34. M.A. Neelakantan, F. Rusalraj, J. Dharmaraja, S. Johnsonraja, T. Jeyakumar, M.S. Pillai, Spectral characterization, cyclic voltammetry, morphology, biological activities and DNA cleaving studies of amino acid Schiff base metal(II) complexes. Spectrochim. Acta 71A, 1599–1609 (2008)

    Article  CAS  Google Scholar 

  35. S. Gopalakrishnan, J. Joseph, Antifungal activities of copper(II) with biosensitive macrocyclic Schiff base ligands derived from 4-aminoantipyrine derivatives. Microbiology 7(2), 141–146 (2009)

    Google Scholar 

  36. M. Rajasekar, S. Sreedaran, R. Prabu, V. Narayanan, R. Jegadeesh, N. Raaman, A.K. Rahiman, Synthesis, characterization, and antimicrobial activities of nickel(II) and copper(II) Schiff-base complexes. J. Coord. Chem. 63(1), 136–146 (2010)

    Article  CAS  Google Scholar 

  37. H. Zhang, D.W. Norman, T.M. Wentaell, A.M. Irving, J.P. Edward, S.L. Wheaton, C.M. Vogels, S.A. Westcotts, F.J. Baerlocher, A. Decken, Palladium salicylaldimine complexes containing boronate esters. Transition Met. Chem. 30(1), 63–68 (2005)

    Article  CAS  Google Scholar 

  38. L.H. Abdel-Rahman, A.M. Abu-Dief, N.A. Hashem, A.A. Seleem, Recent advances in synthesis, characterization and biological activity of nano sized Schiff base amino acid M(II) complexes. Int. J. Nano Chem. 1(2), 79–95 (2015)

    Google Scholar 

  39. M.M. Miloud, F.S. Alassbaly, M.M. El-ajaily, T.H. Al-Noor, Antifungal activities of some divalent and trivalent metal chelates with 2-aminobenzoic acid and Schiff base derived from 4 dimethyaminobenzaldehyde and 2-aminophenol. J. Biol. Chem. Chron. 2(2), 42–46 (2016)

    Google Scholar 

  40. M.M. El-ajaily, H.A. Abdullah, A.A. Aljanga, A.A. Maihub, E.E. Saad, Preparation, physicochemical studies and antimicrobial evaluation of 2-(2-[(2-hydroxyphenyl)ethanimidoyl]phenyl-ethanimidoyl)phenol of novel transition metal chelates. Asian J. of Adv. Basic Sci. 3(1), 5–19 (2014)

    Google Scholar 

  41. R.S. El-zweay, M.M. El-ajaily, O.A. Salem, A.A. Maihub, Effect of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Fe(III) mixed ligand complexes on some bacteria causing eyes infections (BCEI)”. Acad. J. Chem. 2(6), 56–60 (2017)

    Google Scholar 

  42. E. Yousif, A. Majeed, K. Al-Sammarrae, N. Salih, J. Salimon, B. Abdullah, Metal complexes of Schiff base: preparation, characterization and antibacterial activity. Arab. J. Chem. 10, S1639–S1644 (2017)

    Article  CAS  Google Scholar 

  43. C. Fluit, M.R. Visser, F.J. Schmitz, Molecular detection of antimicrobial resistance. Clin. Microbiol. Rev. 14, 836–871 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. F.K. Nejad, M. Khosravan, S.Y. Ebrahimipour, F. Bisceglie, A mixed-ligand quinazoline-based Ni(II) Schiff base complex: synthesis, characterization, crystal structure, antimicrobial investigation and catalytic activity for the synthesis of 2H–indazolo[2,1-b]phthalazine-triones. Appl. Organomet. Chem. 32, e3907 (2018). https://doi.org/10.1002/aoc.3907

    Article  CAS  Google Scholar 

  45. H. Şahal, E. Canpolat, M. Kaya, S. Gür, Co(II), Cu(II) and Zn(II) complexes of N,O-type Schiff base ligand derived from 4,4′-methylenedianiline: synthesis, characterization, antibacterial and antifungal studies. J. Chem. Soc. Pak. 39(4), 544–551 (2017)

    Google Scholar 

  46. M.M.E. Shakdofa, A.N. Al-Hakimi, F.A. Elsaied, S.O.M. Alasbahi, A.M.A. Alkwlini, Synthesis, characterization and bioactivity Zn2+, Cu2+, Ni2+, Co2+, Mn2+, Fe3+, Ru3+, VO2+ and UO2 2+ complexes of 2-hydroxy-5-((4-nitrophenyl) diazenyl)benzylidene)-2-(p-tolylamino)acetohydrazide. Bull. Chem. Soc. Ethiop. 31(1), 75–91 (2017)

    Article  CAS  Google Scholar 

  47. Z. El-Sonbati, M.A. Diab, A.A. El-Bindary, M.I. Abou-Dobara, H.A. Seyam, Molecular docking, DNA binding, thermal studies and antimicrobial activities of Schiff base complexes. J. Mol. Liq. 218, 434–456 (2016)

    Article  CAS  Google Scholar 

  48. J. Devi, S. Devi, A. Kumar, Synthesis, antibacterial evaluation and QSAR analysis of Schiff base complexes derived from [2,2′-(ethylenedioxy)bis(ethylamine)] and aromatic aldehydes. Med. Chem. Commun. 7, 932–947 (2016)

    Article  CAS  Google Scholar 

  49. G. Tweedy, Plant extracts with metal ions as potential antimicrobial agents. Phytopathology 55, 910–914 (1964)

    Google Scholar 

  50. M.M. Abo-Aly, A.M. Salem, M.A. Sayed, A. A. Abdel Aziz, Spectroscopic and structural studies of the Schiff base 3-methoxy-N-salicylidene-o-amino phenol complexes with some transition metal ions and their antibacterial, antifungal activities. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 136, 993–1000 (2015)

    Article  CAS  Google Scholar 

  51. W. Bauer, W.M. Kirby, J.C. Sherris, M. Turck, Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45(4), 493–498 (1966)

    Article  CAS  PubMed  Google Scholar 

  52. M. Alias, H. Kassum, C. Shakir, Synthesis, physical characterization and biological evaluation of Schiff base M(II) complexes. J. Assoc. Arab Univ. Basic Appl. Sci. 15, 28–34 (2014)

    Google Scholar 

  53. A.A.A. Aziz, A.N.M. Salem, M.A. Sayed, M.M. Aboaly, Synthesis, structural characterization, thermal studies, catalytic efficiency and antimicrobial activity of some M(II) complexes with ONO tridentate Schiff base N-salicylidene-o-aminophenol (saphH2). J. Mol. Struct. 1010, 130–138 (2012)

    Article  CAS  Google Scholar 

  54. D.C. Dash, A. Mahapatra, U.K. Mishra, R.K. Mohapatra, Synthesis and characterization of transition metal complexes with benzimidazolyl-2-hydrazones of salicylidene acetone and salicylidene acetophenone. J. Chem. Pharm. Res. 4(1), 279–285 (2012)

    CAS  Google Scholar 

  55. R.K. Mohapatra, U.K. Mishra, S.K. Mishra, A. Mahapatra, D.C. Dash, Synthesis and characterization of transition metal complexes with benzimidazolyl-2-hydrazones of o-anisaldehyde and furfural. J. Korean Chem. Soc. 55(6), 926–931 (2011)

    Article  CAS  Google Scholar 

  56. D.C. Dash, A. Mahapatra, P. Naik, R.K. Mohapatra, S.K. Naik, Synthesis and Characterization of Homobinuclear Complexes of UO2(VI), ZrO(IV) and Th(IV) ions with 3-Benzylidine/Furfurylidine/(Pyridyl/Thienyl-2′-methylene) imino-5-p-sulphonamido phenyl azo-2-thiohydantoins. J. Korean Chem. Soc. 55(3), 412–417 (2011)

    Article  CAS  Google Scholar 

  57. G. Budige, M.R. Puchakayala, S.R. Kongara, A. Hu, R. Vadde, Synthesis, characterization and biological evaluation of mononuclear Co(II), Ni(II), Cu(II) and Pd(II) complexes with New N2O2 Schiff base ligands. Chem. Pharm. Bull. 59(2), 166–171 (2011)

    Article  CAS  PubMed  Google Scholar 

  58. S. Malik, S. Ghosh, L. Mitu, Complexes of some 3d-metals with a Schiff base derived from 5-acetamido-1,3,4-thiadiazole-2-sulphonamide and their biological activity. J. Serb. Chem. Soc. 76(10), 1387–1394 (2011)

    Article  CAS  Google Scholar 

  59. H. Nora, Al-Sha’alan, antimicrobial activity and spectral, magnetic and thermal studies of some transition metal complexes of a Schiff base hydrazone containing a quinoline moiety. Molecules 12, 1080–1091 (2007)

    Article  Google Scholar 

  60. V.A. Shelke, S.M. Jadhav, S.G. Shankarwar, A.S. Munde, T.K. Chondhekar, synthesis, characterization, antibacterial and antifungal studies of some transition and rare earth metal complexes of n-benzylidene-2-hydroxybenzohydrazide. Bull. Chem. Soc. Ethiop. 25(3), 381–391 (2011)

    Article  CAS  Google Scholar 

  61. E.A. Elzahany, K.H. Hegab, S.K.H. Khalil, K.N.S. Youssef, Synthesis, characterization and biological activity of some transition metal complexes with Schiff bases derived from 2-formylindole, salicyladehyde, and N-amino rhodanine. Aust. J. Basic Appl. Sci. 2(2), 210–220 (2008)

    CAS  Google Scholar 

  62. S. Prasad, R.K. Agarwal, Synthesis, magneto-spectral, electrochemical, thermal characterization and antimicrobial investigations of some nickel(II) complexes of hydrazones of isoniazid. J. Korean Chem. Soc. 53(6), 683–692 (2009)

    Article  CAS  Google Scholar 

  63. F.A. Saad, A.M. Khedr, Azo-azomethine ligands with N2O2 donor atom sets and their binuclear UO2(II) complexes: synthesis, characterization and biological activity. Bul. Chem. Commun. 47(2), 654–663 (2015)

    Google Scholar 

  64. Md. Kudrat-E-Zahan, M.S. Islam, Synthesis, characterization, and antimicrobial activity of complexes of Cu(II), Ni(II), Zn(II), Pb(II), Co(II), Mn(II), and U(VI) containing bidentate Schiff base of [S-Methyl-3-(4-methoxybenzylidine)dithiocarbazate]. Russ. J. Gen. Chem. 85(4), 979–983 (2015)

    Article  CAS  Google Scholar 

  65. Md. Saddam Hossain, C.M. Zakaria, Md. Kudrat-E-Zahan, B. Zaman, Synthesis, spectral and thermal characterization of Cu(II) complexes with two new Schiff base ligand towards potential biological application. Der Chem. Sin. 8(3), 380–392 (2017)

    Google Scholar 

  66. D. Gürbüz, A. Çinarli, A. Tavman, A.S.B. Tan, Synthesis, characterization and antimicrobial activity of some transition metal complexes of N-(5-chloro-2-hydroxyphenyl)-3-methoxy-salicylaldimine. Bull. Chem. Soc. Ethiopia 29, 63–74 (2015)

    Article  CAS  Google Scholar 

  67. R. Rajavel, M.S. Vadivu, C. Anitha, Synthesis, physical characterization and biological activity of some Schiff base complexes. E-J. Chem. 5, 620–626 (2008)

    Article  CAS  Google Scholar 

  68. M.A. Neelakantan, S.S. Marriappan, J. Dharmaraja, T. Jeyakumar, K. Muthukumaran, Spectral, XRD, SEM and biological activities of transition metal complexes of polydentate ligands containing thiazole moiety. Spectrochim. Acta 71A, 628–635 (2008)

    Article  CAS  Google Scholar 

  69. A.A. El-Sherif, M.R. Shehata, M.M. Shoukry, M.H. Barakat, Synthesis, characterization, equilibrium study and biological activity of Cu(II), Ni(II) and Co(II) complexes of polydentate Schiff base ligand. Spectrochim. Acta 96A, 889–897 (2012)

    Article  CAS  Google Scholar 

  70. A. Raman, A. Selvan, S. Sudharsan, Metallation of ethylenediamine based Schiff base with biologically active Cu(II), Ni(II) and Zn(II) ions: synthesis, spectroscopic characterization, electrochemical behaviour, DNA binding, photonuclease activity and in vitro antimicrobial efficacy. Spectrochim. Acta 79A, 873–883 (2011)

    Article  CAS  Google Scholar 

  71. K. Mounika, B. Anupama, J. Pragathi, C. Gyanakumari, Synthesis characterization and biological activity of a Schiff base derived from 3-ethoxy salicylaldehyde and 2-amino benzoic acid and its transition metal complexes. J. Sci. Res. 2, 513–524 (2010)

    CAS  Google Scholar 

  72. M.B. Halli, Z.Q. Qureshi, P.V. Reddy, B.A. Jumanal, V.B. Patil, Synthesis, characterisation and spectral studies of metal (II) complexes with benzofuran-2-carbohydrazide Schiff’s bases. J. Ind. Council Chem. 25, 1–6 (2008)

    CAS  Google Scholar 

  73. E. Yousif, A. Majeed, K. Al-Sammarrae, N. Salih, J. Salimon, B. Abdullah, Metal complexes of Schiff base: preparation, characterization and antibacterial activity. Arab. J. Chem. 10(2), S1639–S1644 (2017)

    Article  CAS  Google Scholar 

  74. M.S. Nair, R.S. Joseyphus, Synthesis and characterization of Co(II), Ni(II), Cu(II) and Zn(II) complexes of tridentate Schiff base derived from vanillin and dl-α-aminobutyric acid. Spectrochim. Acta Pt. A 70, 749–753 (2008)

    Article  CAS  Google Scholar 

  75. Y.-Y. Yu, H.-D. Xian, J.-F. Liu, G.-L. Zhao, Synthesis, characterization, crystal structure and antibacterial activities of transition metal(II) complexes of the Schiff base 2-[(4-methylphenylimino) methyl]-6-methoxyphenol. Molecules 14, 1747–1754 (2009)

    Article  CAS  PubMed  Google Scholar 

  76. K. Kiranmai, Y. Prashanthi, N.J.P. Subhashini, D. Shivaraj, Synthesis, characterization and biological activity of metal complexes of 3-amino-5-methyl isoxazole Schiff bases. J. Chem. Pharm. Res. 2, 375–384 (2010)

    CAS  Google Scholar 

  77. C.A. Anitha, C.D. Sheela, P. Tharmaraj, S.J. Raja, Synthesis and characterization of VO(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes of chromone based azo-linked Schiff base ligand. Spectrochim. Acta Pt. A 98, 35–42 (2012)

    Article  CAS  Google Scholar 

  78. N.P. Priya, S. Arunachalam, A. Manimaran, D. Muthupriya, C. Jayabalakrishnan, Mononuclear Ru(III) Schiff base complexes: synthesis, spectral, redox, catalytic and biological activity studies. Spectrochim. Acta 72A, 670–676 (2009)

    Article  CAS  Google Scholar 

  79. I. Sheikhshoaie, S.Y. Ebrahimipour, N. Lotfi, J.T. Mague, M. Khaleghi, Synthesis, spectral characterization, X-ray crystal structure and antimicrobial activities of two cis dioxido-vanadium(V) complexes incorporating unsymmetrical dimalonitrile-based (NNO) Schiff base ligands. Inorg. Chim. Acta 442, 151–157 (2016)

    Article  CAS  Google Scholar 

  80. E. Zangrando, M.S. Begum, M.C. Sheikh, R. Miyatake, M.M. Hossain, M.M. Alam, M.A. Hasnat, M.A. Halim, S. Ahmed, M.N. Rahman, A. Ghosh, Synthesis, characterization, density functional study and antimicrobial evaluation of a series of bischelated complexes with a dithiocarbazate Schiff base ligand. Arab. J. Chem. 10, 172–184 (2017)

    Article  CAS  Google Scholar 

  81. M.S. Valgas, E.F.A. de Souza, A. Smania Jr, Screening methods to determine antibacterial activity of natural products. Braz. J. Microbiol. 38, 369–380 (2007)

    Article  Google Scholar 

  82. M. Gulcan, M. Sonmez, I. Berber, Synthesis, characterization, and antimicrobial activity of a new pyrimidine Schiff base and its Cu(II), Ni(II), Co(II), Pt(II), and Pd(II) complexes, Turk. J. Chem. 36, 189–200 (2012)

    CAS  Google Scholar 

  83. M. Raj, B. Vivekanand, G.Y. Nagesh, B.H.M. Mruthyunjayaswamy, Synthesis, spectroscopic characterization, electrochemistry and biological evaluation of some binuclear transition metal complexes of bicompartmental ONO donor ligands containing benzo[b]thiophene moiety. J. Mol. Struct. 1059, 280–293 (2014)

    Article  CAS  Google Scholar 

  84. N.S. Jha, S. Mishra, S.K. Jha, A. Surolia, Antioxidant activity and electrochemical elucidation of the enigmatic redox behavior of curcumin and its structurally modified analogues. Electrochim. Acta 151, 574-583 (2015)

    Article  CAS  Google Scholar 

  85. M.S. Alam, J.H. Choi, D.U. Lee, Synthesis of novel Schiff base analogues of 4-amino-1,5-dimethyl-2-phenylpyrazol-3-one and their evaluation for antioxidant and anti-inflammatory activity. Bioorg. Med. Chem. 20, 4103–4108 (2012)

    Article  CAS  PubMed  Google Scholar 

  86. M. Aslam, I. Anis, R. Mehmood, L. Iqbal, S. Iqbal, I. Khan, M.S. Chishti, S. Perveen, Synthesis and biological activities of 2-aminophenol-based Schiff bases and their structure–activity relationship. Med. Chem. Res. 25, 109–115 (2016)

    Article  CAS  Google Scholar 

  87. H. Yuksek, S. Kolayli, M. Kucuk, M.O. Yuksek, U. Ocak, E. Sahinbas, E. Sivrikaya, M. Ocak, Synthesis and antioxidant activities of some 4-benzylidenamino-4,5-dihydro-1H-1,2,4-triazol-5-one derivatives. Indian J. Chem. 45B, 715–718 (2006)

    CAS  Google Scholar 

  88. H. Kadhum, A.A. Al-Amiery, A.Y. Musa, A.B. Mohamad, The antioxidant activity of new coumarin derivatives. Int. J. Mol. Sci. 12, 5747–5761 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. A. Panzariu, I.M. Vasincu, O.M. Dragostin, M. Dragan, F. Buron, S. Routier, L. Profire, New arginine derivatives-synthesis and biological evaluation. Farmacia 63(4), 581–585 (2015)

    CAS  Google Scholar 

  90. M. Khan, A. Khan, M. Taha, U. Salar, A. Hameed, N.H. Ismail, W. Jamil, S.M. Saad, S. Perveen, S.M. Kashif, Synthesis of 4-amino-1,5-dimethyl-2-phenylpyrazolone derivatives and their antioxidant activity. J. Chem. Soc. Pak. 37(4), 802–810 (2015)

    CAS  Google Scholar 

  91. A. Perez-Gonzalez, J.R. Galano, Alvarez-Idaboy, Dihydroxybenzoic acids as free radical scavengers: mechanisms, kinetics and trends in activity. New J. Chem. 38, 2639 (2014)

    Article  CAS  Google Scholar 

  92. Z. Markovic, J. Dorovic, J.D. Markovic, M. Zivic, D. Amic, Investigation of the radical scavenging potency of hydroxybenzoic acids and their carboxylate anions. Monatsh. Chem. 145(6), 953–962 (2014)

    Article  CAS  Google Scholar 

  93. J.D. Rajput, S.D. Bagul, S.R. Bendre, Synthesis, biological activities and molecular docking simulation of hydrazone scaffolds of carvacrol, thymol and eugenol. Res. Chem. Intermed. (2017). https://doi.org/10.1007/s11164-017-3007-3

    Article  Google Scholar 

  94. S. Son, B.A. Lewis, Free radical scavenging and antioxidative activity of caffeic acid amide and ester analogues: structure–activity relationship. J. Agric. Food Chem. 50(3), 468–472 (2002)

    Article  CAS  PubMed  Google Scholar 

  95. H.K. Reddy, S.-M. Lee, K. Seshaiah, K.R. Babu, Synthesis, characterization of thiosemicarbazone metal complexes and their antioxidant activity in different in vitro model systems. J. Serb. Chem. Soc. 77, 229–240 (2012)

    Google Scholar 

  96. M. Akila, R. Usharani, Rajavel, Metal (II) complexes of bioinorganic and medicinal relevance: antibacterial, antioxidant and DNA cleavage studies of tetradentate complexes involving O, N-donor environment of 3,3′-dihydroxybenzidine-based Schiff bases. Int. J. Pharm. Sci. 5, 573–581 (2013)

    Google Scholar 

  97. J. Vanco, J. Marek, Z. Travnicek, E. Racanska, J. Muselık, O. Svajlenova, Synthesis, structural characterization, antiradical and antidiabetic activities of copper(II) and zinc(II) Schiff base complexes derived from salicylaldehyde and β-alanine. J. Inorg. Biochem. 102, 595–605 (2008)

    Article  CAS  PubMed  Google Scholar 

  98. B. Prathima, Y.S. Rao, S.A. Reddy, Y.P. Reddy, A.V. Reddy, Copper(II) and nickel(II) complexes of benzyloxybenzaldehyde-4-phenyl-3-thiosemicarbazone: synthesis, characterization and biological activity. Spectrochim. Acta 77A, 248–252 (2010)

    Article  CAS  Google Scholar 

  99. R.M. Wang, J.J. Mao, J.F. Song, C.X. Huo, Y.F. He, Antioxidant activity of bovine serum albumin binding amino acid Schiff-bases metal complexes. Chin. Chem. Lett. 18, 1416–1418 (2007)

    Article  CAS  Google Scholar 

  100. D. Udayagiri, N.G. Yernale, B.H.M. Mruthyunjayaswamy, Preparation, Spectral Characterization and Biological activities of Ligand 5-chloro-N′-(2-hydroxy-4-phenyldiazenyl)benzylidene-3-phenyl-1H-indole-2-carbohydrazide and its Metal (II) complexes. Der. Pharm. Chem. 8(10), 37–46 (2016)

    CAS  Google Scholar 

  101. G. Yernale, M.D. Udayagiri, B.H.M. Mruthyunjayaswamy, Synthesis, characterization, mass spectral fragmentation, thermal study and biological evaluation of new Schiff base ligand and its metal (II) complexes derived from 4-(diethylamino) salicylaldehyde and thiazole moiety. Eur. J. Chem. 7(1), 56–65 (2016)

    Article  CAS  Google Scholar 

  102. S.K. Tadavi, A.A. Yadav, R.S. Bendre, Synthesis and characterization of a novel Schiff base of 1,2-diaminopropane with substituted salicylaldehyde and its transition metal complexes: single crystal structures and biological activities. J. Molecular Structure. 1152, 223–231 (2018)

    Article  CAS  Google Scholar 

  103. M. Gulcan, S. Özdemir, A. Dündar, E. Ispir, M. Kurtoglu, Mononuclear complexes based on pyrimidine ring azo Schiff-base ligand: synthesis, characterization, antioxidant, antibacterial, and thermal investigations. Z. Anorg. Allg. Chem. 640(8–9), 1754–1762 (2014)

    Article  CAS  Google Scholar 

  104. K.J. Du, J.Q. Wang, J.F. Kou, G.Y. Li, L.L. Wang, H. Chao, L.N. Ji, Synthesis, DNA-binding and topoisomerase inhibitory activity of ruthenium(II) polypyridyl complexes. Eur. J. Med. Chem. 46, 1056–1065 (2011)

    Article  CAS  PubMed  Google Scholar 

  105. M. Sirajuddin, S. Ali, N.A. Shah, M.R. Khan, M.N. Tahir, Synthesis, characterization, biological screenings and interaction with calf thymus DNA of a novel azomethine 3-((3,5-dimethylphenylimino)methyl)benzene-1,2-diol. Spectrochim. Acta. 94A, 134–142 (2012)

    Article  CAS  Google Scholar 

  106. M. Shabbir, Z. Akhter, I. Ahmad, S. Ahmed, H. Ismail, B. Mirza, V. McKee, M. Bolte, Synthesis, characterization, biological and electrochemical evaluation of novel ether based ON donor bidentate Schiff bases. J. Mol. Struct. 1116, 84–92 (2016)

    Article  CAS  Google Scholar 

  107. S. Nayab, M. Pulaganti, S.K. Chitta, A. Rahisuddin, New isoindoline, based Schiff base derivative as Cu(II) chemosensor: synthesis, photophysical, DNA binding and molecular docking studies. J. Fluoresc. 25(6), 1763–1773 (2015). https://doi.org/10.1007/s10895-015-1664-4

    Article  CAS  PubMed  Google Scholar 

  108. S. Murtaza, A. Tatheer, 4-Acetamidobenzaldehyde derivatives as biological active candidates; synthesis, anti-oxidant, Anti-Alzheimer and DNA binding studies., Lett. Drug Des. Discovery (2017). https://doi.org/10.2174/1570180814666171026161646

    Article  Google Scholar 

  109. N. Raman, K. Pothiraj, T. Baskaran, Synthesis, characterization, and DNA damaging of bivalent metal complexes incorporating tetradentate dinitrogen–dioxygen ligand as potential biocidal agents. J. Coord. Chem. 64, 4286–4300 (2011)

    Article  CAS  Google Scholar 

  110. K.S. Prasad, L.S. Kumar, S. Chandan, B. Vijaya, H.D. Revanasiddappa, Synthesis, characterization and DNA interaction studies of copper(II) complex of 4(3H)-quinazolinone-derived Schiff base, Analele Univ. Bucuresti Chim. 20, 7–13 (2011)

    CAS  Google Scholar 

  111. A. Silvestri, G. Barone, G. Ruisi, D. Anselmo, S. Riela, V.T. Liveri, The interaction of native DNA with Zn(II) and Cu(II) complexes of 5-triethyl ammonium methyl salicylidene orto-phenylendiimine. J. Inorg. Biochem. 101, 841–848 (2007)

    Article  CAS  PubMed  Google Scholar 

  112. N. Raman, K. Pothiraj, T. Baskaran, DNA-binding, oxidative DNA cleavage and coordination mode of later 3d transition metal complexes of a Schiff base derived from isatin as antimicrobial agents. J. Coord. Chem. 64, 3900–3917 (2011)

    Article  CAS  Google Scholar 

  113. M. Jogi, D.N.A. Padmaja, Synthesis, characterization, binding, and DNA cleavage studies of transition metal complexes of Schiff base derived from 2-amino methyl benzimidazole and p-methyl benzaldehyde. Int. J. Eng. Technol. Sci. Res. 4(9), 406–415 (2017)

    Google Scholar 

  114. N. Kumaravel, Raman, A treatise on benzimidazole based Schiff base metal(II) complexes accentuating their biological efficacy: spectroscopic evaluation of DNA interactions, DNA cleavage and antimicrobial screening. Mater. Sci. Eng. C. 70, 184–194 (2017)

    Article  CAS  Google Scholar 

  115. N. Vamsikrishna, M.P. Kumar, G. Ramesh, N. Ganji, S. Daravath, DNA interactions and biocidal activity of metal complexes of benzothiazole Schiff bases: synthesis, Characterization and Validation. J. Chem. Sci. 129(5), 609–622 (2017)

    Article  CAS  Google Scholar 

  116. B. Begum, N.D. Rekha, B.C.V. Kumar, V.L. Ranganatha, S.A. Khanum, Synthesis, characterization, biological and catalytic applications of transition metal complexes derived from Schiff base. Bioorg. Med. Chem. Lett. 24, 3559–3564 (2014)

    Article  CAS  Google Scholar 

  117. C. Anitha, C.D. Sheela, P. Tharmaraj, S. Sumathi, Spectroscopic studies and biological evaluation of some transition metal complexes of azo Schiff-base ligand derived from (1-phenyl-2,3-dimethyl-4-aminopyrazol-5-one) and 5-((4-chlorophenyl)diazenyl)-2-hydroxybenzaldehyde. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 96, 493–500 (2012)

    Article  CAS  Google Scholar 

  118. N. Raman, J.D. Raja, A. Sakthivel, Synthesis, spectral characterization of Schiff base transition metal complexes: DNA cleavage and antimicrobial activity studies. J. Chem. Sci. 119(4), 303–310 (2007)

    Article  CAS  Google Scholar 

  119. N. Vamsikrishna, M.P. Kumar, S. Tejaswi, A. Rambabu, D.N.A. Shivaraj, Binding, Cleavage and antibacterial activity of mononuclear Cu(II), Ni(II) and Co(II) complexes derived from novel benzothiazole Schiff bases. J. Fluoresc. 26, 1317–1329 (2016)

    Article  CAS  PubMed  Google Scholar 

  120. S. Packianathan, G. Kumaravel, N. Raman, DNA interaction, antimicrobial and molecular docking studies of biologically interesting Schiff base complexes incorporating 4-formyl-N,N-dimethylaniline and propylenediamine., Appl. Organometal. Chem. (2016). https://doi.org/10.1002/aoc.3577

    Article  Google Scholar 

  121. M. Iqbal, S. Ali, M.N. Tahir, N. Muhammad, N.A. Shah, M.R. Sohail, V. Pandarinathan, Synthesis, crystal structure and electrochemical and DNA binding studies of oxygen bridged-copper(II) carboxylate. J. Mol. Struct. 1093, 135–143 (2015)

    Article  CAS  Google Scholar 

  122. R. Reddy, A. Shilpa, Oxidative and hydrolytic DNA cleavage by Cu(II) complexes of salicylidene tyrosine Schiff base and 1,10-phenanthroline/bipyridine. Polyhedron 30, 565–572 (2011)

    Article  CAS  Google Scholar 

  123. R. Prabhakaran, P. Kalaivani, P. Poornima, F. Dallemer, G. Paramaguru, V. Vijaya Padma, R. Renganathan, R. Huang, K. Natarajan, One pot synthesis of structurally different mono and dimeric Ni(II) thiosemicarbazone complexes and N-arylation on a coordinated ligand: a comparative biological study. Dalton Trans. 41, 9323–9336 (2012)

    Article  CAS  PubMed  Google Scholar 

  124. P. Kalaivani, R. Prabhakaran, E. Ramachandran, F. Dallemer, G. Paramaguru, R. Renganathan, P. Poornima, V. Vijaya Padma, K. Natarajan, Influence of terminal substitution on structural, DNA, Protein binding, anticancer and antibacterial activities of palladium(II) complexes containing 3-methoxy salicylaldehyde-4(N) substituted thiosemicarbazones. Dalton Trans. 41, 2486–2499 (2012)

    Article  CAS  PubMed  Google Scholar 

  125. E. Kahrovic, A. Zahirovic, E. Turkusic, S. Bektas, A dinuclear ruthenium (II) Schiff base complex with dissimilar coordination: synthesis, characterization, and biological activity. Z. Anorg. Allg. Chem. 642(6), 480–485 (2016)

    Article  CAS  Google Scholar 

  126. N. Ljubijankic, A. Zahirovic, E. Turkusic, E. Kahrovic, DNA binding properties of two ruthenium(III) complexes containing Schiff bases derived from salicylaldehyde: spectroscopic and electrochemical evidence of CT DNA intercalation. Croat. Chem. Acta 86(2), 215–222 (2013)

    Article  CAS  Google Scholar 

  127. S. Senthilkumar, M. Sankarganesh, J. Rajesh, C. Vedhi, J. Dhaveethu Raja, S. Synthesis, Characterization, DNA interaction, antioxidant, and antimicrobial studies of new water soluble metal(II) complexes of morpholine based ligand. Russ. J. General Chem. 87(11), 2654–2663 (2017)

    Article  CAS  Google Scholar 

  128. S. Joseyphus, M.S. Nair, Synthesis, characterization and biological studies of some Co(II), Ni(II) and Cu(II) complexes derived from indole-3-carboxaldehyde and glycylglycine as Schiff base ligand. Arab. J. Chem. 3, 195–204 (2010)

    Article  CAS  Google Scholar 

  129. N. Raman, J.D. Raja, A. Sakthivel, Design, synthesis, spectroscopic characterization, biological screening, and DNA nuclease activity of transition metal complexes derived from a tridentate Schiff base. Russ. J. Coord. Chem. 34(6), 400–406 (2008)

    Article  CAS  Google Scholar 

  130. H.S. Saleem, M. Sankarganesh, P.R.A. Jose, K. Sakthikumar, L. Mitu, J.D. Raja, Investigation of antimicrobial, antioxidant, and DNA binding studies of bioactive Cu(II), Zn(II), Co(II), and Ni(II) Complexes of pyrimidine derivative Schiff base ligand. J. Chem. (2017). https://doi.org/10.1155/2017/3831507

    Article  Google Scholar 

  131. C. Manimaran, Jayabalakrishnan, DNA-binding, catalytic oxidation, CAC coupling reactions and antibacterial activities of binuclear Ru(II) thiosemicarbazone complexes: synthesis and spectral characterization. J. Adv. Res. 3, 233–243 (2012)

    Article  CAS  Google Scholar 

  132. N. Raman, L. Mitu, A. Sakthivel, M.S.S. Pandi, Studies on DNA cleavage and antimicrobial screening of transition metal complexes of 4-aminoantipyrine derivatives of N2O2 type. J. Iran. Chem. Soc. 6(4), 738–748 (2009)

    Article  CAS  Google Scholar 

  133. N. Mahalakshmi, R. Rajavel, Synthesis, spectroscopic, DNA cleavage and antibacterial activity of binuclear Schiff base complexes. Arabian J. Chem. 7, 509–517 (2014)

    Article  CAS  Google Scholar 

  134. M. Kratky, M. Dzurkova, J. Janousek, K. Konecna, F. Trejtnar, J. Stolaríkova, J. Vinsova, Sulfadiazine salicylaldehyde-based Schiff bases: synthesis, antimicrobial activity and cytotoxicity. Molecules 22, 1573 (2017). https://doi.org/10.3390/molecules22091573

    Article  CAS  Google Scholar 

  135. H. Kaur, S.M. Lim, K. Ramasamy, M. Vasudevan, S.A. AliShah, B. Narasimhan, Diazenyl Schiff bases: synthesis, spectral analysis, antimicrobial studies and cytotoxic activity on human colorectal carcinoma cell line (HCT-116). Arab. J. Chem (2017). https://doi.org/10.1016/j.arabjc.2017.05.004

    Article  Google Scholar 

  136. S. Karthik, L. Mallesha, S. Nagashree, P. Mallu, V. Patil, S. Kumar, Schiff bases of 4-(methylthio)benzaldehydes: synthesis,characterization, antibacterial, antioxidant and cytotoxicity studies. Curr. Chem. Lett. 5, 71–82 (2016)

    Article  Google Scholar 

  137. S.A. El-All, F.A.F. Ragab, A.A.M. El-Din, M.M. Abdalla, M.M. El-Hefnawi, A.A. El-Rashedy, Design, synthesis and anticancer evaluation of some selected Schiff Bases derived from benzimidazole derivative. Glob. J. Pharmacol. 7(2), 143–152 (2013)

    Google Scholar 

  138. M.A. Hussein, M.A. Iqbal, M.I. Umar, R.A. Haque, T.S. Guan, Synthesis, structural elucidation and cytotoxicity of new thiosemicarbazone derivatives. Arab. J. Chem. (2015). https://doi.org/10.1016/j.arabjc.2015.08.013

  139. S. Maddela, A. Makula, Design, synthesis and docking study of some novel isatin-quinoline hybrids as potential antitubercular agents. Anti Infective Agents 14, 53–62 (2016)

    Article  CAS  Google Scholar 

  140. Y.-F. Luo, B.-F. Xia, L.-R. Sun, X.-H. Huang, H.-Y. Wang, X.-H. Lou, W.-D. Zhu, X.-D. Pan, Zhang, Synthesis and evaluation of vitro antibacterial and antitumor activities of novel N,N-disubstituted Schiff bases. Biochem. Res. Int. (2017). https://doi.org/10.1155/2017/6257240

    Article  PubMed  PubMed Central  Google Scholar 

  141. S.A.M. El-Hawash, A.E. Abdel Wahab, M.A. El-Demellawy, Cyanoacetic acid hydrazones of 3-(and 4-)acetylpyridine and some derived ring systems as potential antitumor and anti-HCV agents. Archiv. Der. Pharmazie. 339(1), 14–23 (2006)

    Article  CAS  PubMed  Google Scholar 

  142. S. Yadav, B. Narasimhan, S.M. Lim, K. Ramasamy, M. Vasudevan, S.A.A. Shah, M. Selvaraj, Synthesis, characterization, biological evaluation and molecular docking studies of 2‑(1H‑benzo[d]imidazol‑2‑ylthio)‑N‑(substituted 4‑oxothiazolidin‑3‑yl) acetamides. Chem. Cent. J. 11, 137 (2017). https://doi.org/10.1186/s13065-017-0361-6

    Article  PubMed  PubMed Central  Google Scholar 

  143. S. Amer, N. El-Wakiel, H. El-Ghamry, Synthesis, spectral, antitumor and antimicrobial studies on Cu(II) complexes of purine and triazole Schiff base derivatives. J. Mol. Struct. 1049, 326–335 (2013)

    Article  CAS  Google Scholar 

  144. S. Creaven, B. Duff, D.A. Egan, Anticancer and antifungal activity of copper(II) complexes of quinolin-2(1H)-one-derived Schiff bases. Inorg. Chim. Acta. 363, 4048–4058 (2010)

    Article  CAS  Google Scholar 

  145. T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63 (1983)

    Article  CAS  PubMed  Google Scholar 

  146. G. Raja, R.J. Butcher, C. Jayabalakrishnan, Studies on synthesis, characterization, DNA interaction and cytotoxicity of ruthenium(II) Schiff base complexes. Spectrochim. Acta. 94A, 210–215 (2012)

    Article  CAS  Google Scholar 

  147. M. Shabbir, Z. Akhter, I. Ahmad, S. Ahmed, V. McKee, H. Ismail, B. Mirza, Copper (II) complexes bearing ether based ON donor bidentate Schiff bases: synthesis, characterization, biological and electrochemical investigations. Polyhedron. 124, 117–124 (2017)

    Article  CAS  Google Scholar 

  148. N.G. El-Kholy, Synthesis, spectroscopic characterization, antimicrobial, antitumor properties of new 4-amino-2,3 dimethyl-1-phenyl-3-pyrazolone-5-one (antipyrine) Schiff bases and its transition metal complexes. J. Am. Sc. 13(2), 132–145 (2017)

    Google Scholar 

  149. M. Azam, S.I. Al-Resayes, S.M. Soliman, A. Trzesowska-Kruszynska, R. Kruszynski, Z. Khan, A (salicylaldiminato)Pt(II) complex with dimethylpropylene linkage: synthesis, structural characterization and antineoplastic activity. J. Photochem. Photobiol. B Biol. 176, 150–156 (2017)

    Article  CAS  Google Scholar 

  150. N.A. Mazlan, T.B.S.A. Ravoof, E.R.T. Tiekink, M.I.M. Tahir, A. Veerakumarasivam, K.A. Crouse, Mixed-ligand metal complexes containing an ONS Schiff base and imidazole/benzimidazole ligands: synthesis, characterization, crystallography and biological activity. Trans. Met. Chem. 39, 633–639 (2014)

    Article  CAS  Google Scholar 

  151. E. Patterson, J.J. Miller, B.A. Miles, E.L. Stewart, J.-M.E.J. Melanson, C.M. Vogels, A.M. Cockshutt, A. Decken, P. Morin Jr., S.A. Westcott, Synthesis, characterization and anticancer properties of (salicylaldiminato)platinum(II) complexes. Inorganica Chim. Acta. 415, 88–94 (2014)

    Article  CAS  Google Scholar 

  152. T. Stringer, B. Therrien, D.T. Hendricks, H. Guzgay, G.S. Smith, Mono- and dinuclear (η6-arene) ruthenium(II) benzaldehyde thiosemicarbazone complexes: Synthesis, characterization and cytotoxicity. Inorganic Chem. Comm. 14, 956–960 (2011)

    Article  CAS  Google Scholar 

  153. W. Hernandez, J. Paz, A. Vaisberg, E. Spodine, R. Richter, L. Beyer, Synthesis, characterization, and in vitro cytotoxic activities of benzaldehyde thiosemicarbazone derivatives and their palladium(II) and platinum(II) complexes against various human tumor cell lines. Bioinorg. Chem. Appl. 690952, 1–9 (2008)

    Article  CAS  Google Scholar 

  154. U. Dongfang, M.A. Shuzhi, D.U. Guangying, H.E. Qizhuang, S.U.N. Dazhi, Synthesis, characterization and anticancer properties of rare earth complexes with Schiff base and ophenanthroline. J. Rare Earths 26(5), 643–647 (2008)

    Article  Google Scholar 

  155. E. Ramachandran, P. Kalaivani, R. Prabhakaran, N.P. Rath, S. Brinda, P. Poornima, V.V. Padmad, K. Natarajan, Synthesis, X-ray crystal structure, DNA binding, antioxidant and cytotoxicity studies of Ni(II) and Pd(II) thiosemicarbazone complexes. Metallomics 4, 218–227 (2012)

    Article  CAS  PubMed  Google Scholar 

  156. P. Kalaivani, R. Prabhakaran, F. Dallemer, P. Poornima, E. Vaishnavi, E. Ramachandran, V. Vijaya Padma, R. Renganathan, K. Natarajan, DNA, protein binding, cytotoxicity, cellular uptake and antibacterial activities of new palladium(II) complexes of thiosemicarbazone ligands: effects of substitution on biological activity. Metallomics 4, 101–113 (2012)

    Article  CAS  PubMed  Google Scholar 

  157. P. Kalaivani, R. Prabhakaran, E. Vaishnavi, T. Rueffer, H. Lang, P. Poornima, R. Renganathan, V.V. Padma, K. Natarajan, Synthesis, structure, DNA/protein binding and in vitro cytotoxicity of new ruthenium metallates. Inorg. Chem. Front. (2014). https://doi.org/10.1039/c3qi00070b

    Article  Google Scholar 

  158. N. Revathi, M. Sankarganesh, J. Rajesh, J.D. Raja, Biologically active Cu(II), Co(II), Ni(II) and Zn(II) Complexes Of Pyrimidine Derivative Schiff base: DNA binding, antioxidant, antibacterial and in vitro anticancer studies., J Fluoresc. https://doi.org/10.1007/s10895-017-2118-y

  159. L.J. Li, C. Wang, C. Tian, X.Y. Yang, X.X. Hua, J.L. Du, Water-soluble platinum(II) complexes of reduced amino acid Schiff bases: synthesis, characterization, and antitumor activity. Res. Chem. Intermed. 39(2), 733–746 (2013)

    Article  CAS  Google Scholar 

  160. M.M. Abd-Elzaher, A.A. Labib, H.A. Mousa, S.A. Moustafa, M.M. Ali, A.A. El-Rashedy, Synthesis, anticancer activity and molecular docking study of Schiff base complexes containing thiazole moiety. Beni Suef Univ. J. Basic Appl. Sci. 5, 85–96 (2016)

    Google Scholar 

  161. P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, New colorimetric cytotoxicity assay for anticancer-drug screening, Natl. Cancer Inst. 82, 1107–1112 (1990)

    Article  CAS  Google Scholar 

  162. J. Dhanaraj, J. Johnson, Studies on some metal complexes of quinoxaline based unsymmetric ligand: Synthesis, spectral characterization, in vitro biological and molecular modeling studies. J. Photochem. Photobiol. B Biol. 161, 108–121 (2016)

    Article  CAS  Google Scholar 

  163. Y.-X. Tan, Z.-J. Zhang, Y. Liu, J.-X. Yu, X.-M. Zhu, D.-Z. Kuang, W.-J. Jiang, Synthesis, crystal structure and biological activity of the Schiff base organotin(IV) complexes based on salicylaldehyde-o-aminophenol. J. Mol. Struct. 1149, 874–881 (2017)

    Article  CAS  Google Scholar 

  164. Shiju, D. Arish, S. Kumaresan, Synthesis, characterization, cytotoxicity, DNA cleavage, and antimicrobial activity of lanthanide(III) complexes of a Schiff base ligand derived from glycylglycine and 4-nitrobenzaldehyde, Arab. J. Chem. 10(2), S2584–S2591 (2017).

    Article  CAS  Google Scholar 

  165. S. Sarma, P.K. Bhattacharyya, D.K. Das, Condensation product of phenylalanine and salicylaldehyde: fluorescent sensor for Zn2+. J. Fluoresc. 26, 899–904 (2016)

    Article  CAS  PubMed  Google Scholar 

  166. S.M. Hossain, K. Singh, A. Lakma, R.N. Pradhan, A.K. Singh, A Schiff base ligand of coumarin derivative as an ICT-based fluorescence chemosensor for Al3+. Sens. Actuators B 239, 1109–1117 (2017)

    Article  CAS  Google Scholar 

  167. S.K. Sheet, B. Sen, R. Thounaojam, K. Aguan, S. Khatua, Highly selective light-up Al3+ sensing by a coumarin based Schiff base probe: Subsequent phosphate sensing DNA binding and live cell imaging. J. Photochem. Photobiol. A Chem. 332, 101–111 (2017)

    Article  CAS  Google Scholar 

  168. A.A. Emara, A.M. Ali, A.F. El-Asmy, E.S.M. Ragab, Investigation of the oxygen affinity of manganese(II), cobalt(II) and nickel(II) complexes with some tetradentate Schiff bases. J. Saudi Chem. Soc. 18, 762–773 (2014)

    Article  Google Scholar 

  169. N. Dixit, L. Mishra, S.M. Mustafi, K.V.R. Chary, H. Houjou, Synthesis of a ruthenium(II) bipyridyl complex coordinated by a functionalized Schiff base ligand: characterization, spectroscopic and isothermal titration calorimetry measurements of M2+ binding and sensing (M2+=Ca2+, Mg2+). Spectrochim. Acta. 73A, 29–34 (2009)

    Article  CAS  Google Scholar 

  170. G. Ceyhan, M. Köse, V. McKee, S. Urus, A. Gölcü, M. Tümer, Tetradentate Schiff base ligands and their complexes: synthesis, structural characterization, thermal, electrochemical and alkane oxidation. Spectrochim. Acta. 95A, 382–398 (2012)

    Article  CAS  Google Scholar 

  171. G. Grivani, G. Bruno, H.A. Rudbari, A.D. Khalaji, P. Pourteimour, Synthesis, characterization and crystal structure determination of a new oxovanadium(IV) Schiff base complex: the catalytic activity in the epoxidation of cyclooctene. Inorg. Chem. Commun. 18, 15–20 (2012)

    Article  CAS  Google Scholar 

  172. A. Soroceanu, M. Cazacu, S. Shova, C. Tura, J. Kozisek, M. Gall, M. Breza, P. Rapta, T.C. Leod, T.J. Pombeiro, A.J. Telser, J. Dobrov, Copper(II) complexes with Schiff bases containing a disiloxane unit: synthesis, structure, bonding features and catalytic activity for aerobic oxidation of benzyl alcohol. Eur. J. Inorganic Chem. 9, 1458–1474 (2013)

    Article  CAS  Google Scholar 

  173. O.K. Olurotimi, A.J. Adeyemi, B.O. Agbeke, O. Olajumoke, S.T. Oluwasegun, E.G. Sunday, Structural and biological activity study of (E)-N’-(5-Chloro-2-Hydroxybenzylidene)Nicotinohydrazide) [H2L] and some of its divalent metal complexes. Orient. J. Chem. 33(4), 1623–1635 (2017)

    Article  CAS  Google Scholar 

  174. S. Priyarega, M.M. Tamizh, S.G. Babu, R. Karvembu, K. Natarajan, Copper(II) complexes with ONS donor ligand and triphenylphosphine: synthesis, characterization and catalytic applications. Indian J. Chem. 51A, 453–457 (2012)

    CAS  Google Scholar 

  175. T.L. Che, Q.C. Gao, J.S. Zhao, G. Zhang, Synthesis, structure and characterization of Schiff base metal complexes and their electrochemical properties of thionyl chloride reduction. Chin. J. Chem. 26(6), 1079–1084 (2008)

    Article  CAS  Google Scholar 

  176. M.M. Tamizh, K. Mereiter, K. Kirchner, R. Karvembu, Ruthenium (II) carbonyl complexes containing ‘pincer like’ ONS donor Schiff base and triphenylphosphine as catalyst for selective oxidation of alcohols at room temperature. J. Organomet. Chem. 700, 194–201 (2012)

    Article  CAS  Google Scholar 

  177. A. Ourari, M. Khelafi, D. Aggoun, A. Jutand, C. Amatore, Electrocatalytic oxidation of organic substrates with molecular oxygen using tetradentate ruthenium(III) Schiff base complexes as catalysts. Electrochim. Acta 75, 366–370 (2012)

    Article  CAS  Google Scholar 

  178. M.R. Maurya, M. Kumar, U. Kumar, Polymer-anchored vanadium(IV), molybdenum(VI) and copper(II) complexes of bidentate ligand as catalyst for the liquid phase oxidation of organic substrates. J. Mol. Catal. A Chem. 273, 133–143 (2007)

    Article  CAS  Google Scholar 

  179. G. Gonzalez-Riopedre, M.I. Fernandez-Garcia, E. Gomez-Forneas, M. Maneiro, Biomimetic catalysts for oxidation of veratryl alcohol, a lignin compound. Catalysts. 3(1), 232–246 (2013)

    Article  CAS  Google Scholar 

  180. K. Kervinen, P. Lahtinen, T. Repo, M. Svanh, M. Leskela, The effect of reaction conditions on the oxidation of veratryl alcohol catalyzed by cobalt salen-complexes. Catal. Today 75, 183–188 (2002)

    Article  CAS  Google Scholar 

  181. G. Grivani, A.D. Khalaji, V. Tahmasebi, K. Gotoh, H. Ishida, Synthesis, characterization and crystal structures of new bidentate Schiff base ligand and its vanadium(IV) complex: the catalytic activity of vanadyl complex in epoxidation of alkenes. Polyhedron 31, 265–271 (2012)

    Article  CAS  Google Scholar 

  182. S. Liu, J. Peng, H. Yang, Y. Bai, J. Li, G. Lai, Highly efficient and convenient asymmetric hydrosilylation of ketones catalyzed with zinc Schiff base complexes. Tetrahedron 68, 1371–1375 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjan K. Mohapatra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohapatra, R.K., Das, P.K., Pradhan, M.K. et al. Biological aspects of Schiff base–metal complexes derived from benzaldehydes: an overview. J IRAN CHEM SOC 15, 2193–2227 (2018). https://doi.org/10.1007/s13738-018-1411-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-018-1411-2

Keywords

Navigation