Skip to main content
Log in

Effect of pore architecture on osteoblast adhesion and proliferation on hydroxyapatite/poly(D,L) lactic acid-based bone scaffolds

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The fabrication of three-dimensional (3D) scaffolds with an optimal pore architecture (e.g., pore size and porosity) that effectively promotes cellular activity on scaffold surfaces is of great interest in bone tissue engineering. In this work, three various 3D hydroxyapatite/poly(D,L)-lactic acid (HAp/PDLLA) scaffolds with different values of HAp to PDLLA in weight percent (0, 10, and 30%) were fabricated by applying a solvent casting–particulate leaching technique. Chloroform was used as a casting solvent to investigate the effects of pore architecture on cellular adhesion, distribution, and proliferation on the fabricated scaffolds. These scaffolds were characterized through field-emission scanning electron microscopy, X-ray diffraction, and liquid substitution to determine their structure, morphological characteristics, pore sizes, and porosity. Cell proliferation, adhesion, and distribution on these scaffolds were evaluated through in vitro tests with human osteoblast MG 63 cell line. Results showed that pore size and porosity greatly affected the proliferation, adhesion, and distribution of MG 63 cells on the fabricated scaffolds. Mean pore sizes ranging from 177 to 245 µm and porosities varying from 76 to 83% were optimal for cell proliferation and adhesion on these scaffolds. Among the fabricated scaffolds, 3D HAp/PDLLA scaffolds with 10% (m/m) HAp to PDLLA exhibited the highest cell adhesion and good cell proliferation capabilities and formed a well-organized cytoskeleton architecture after 7 days of culture. Hence, 3D HAp/PDLLA scaffolds as biomaterials showed potential for bone tissue applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.W.T. Shum, A.F.T. Mak, Poly. Degrad. Stabil. 81, 141 (2003)

    Article  CAS  Google Scholar 

  2. Z. Xiong, Y. Yan, R. Zhang, L. Sun, Scr. Mater. 45, 773 (2001)

    Article  CAS  Google Scholar 

  3. Q. Liu, S. Tian, C. Zhao, X. Chen, L. Lei, Z. Wang, P.X. Ma, Acta Biomater. 26, 105 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. T. Nie, L. Xue, M. Ge, H. Ma, Mater. Lett. 176, 25 (2016)

    Article  CAS  Google Scholar 

  5. F.J. Hua, T.G. Park, D.S. Lee, Polymer 44, 1911 (2003)

    Article  CAS  Google Scholar 

  6. R.J. Kane, H.E. Weiss-Bilka, M.J. Meagher, Y. Liu, J.A. Gargac, G.L. Niebur, D.R. Wagner, R.K. Roeder, Acta Biomater. 17, 16 (2015)

    Article  CAS  PubMed  Google Scholar 

  7. H.-W. Kang, Y. Tabata, Y. Ikada, Biomaterials 20, 1339 (1999)

    Article  CAS  PubMed  Google Scholar 

  8. X. Li, L. Jin, G. Balian, C.T. Laurencin, D.G. Anderson, Biomaterials 27, 2426 (2006)

    Article  CAS  PubMed  Google Scholar 

  9. P. de la Puente, D. Ludeña, Exp. Cell Res. 322, 1 (2014)

    Article  CAS  PubMed  Google Scholar 

  10. Y.I. Yang, D.L. Seol, H.I. Kim, M.H. Cho, S.J. Lee, Curr. Appl. Phys. 7, e103 (2007)

    Article  Google Scholar 

  11. G. Cervi, F. Peri, C. Battistini, C. Gennari, F. Nicotra, Bioorg. Med. Chem. 14, 3349 (2006)

    Article  CAS  PubMed  Google Scholar 

  12. H.R. Ramay, M. Zhang, Biomaterials 24, 3293 (2003)

    Article  CAS  PubMed  Google Scholar 

  13. S. Deville, E. Saiz, A.P. Tomsia, Biomaterials 27, 5480 (2006)

    Article  CAS  PubMed  Google Scholar 

  14. C.F.L. Santos, A.P. Silva, L. Lopes, I. Pires, I.J. Correia, Mater. Sci. Eng. C 32, 1293 (2012)

    Article  CAS  Google Scholar 

  15. Q. Fu, E. Saiz, M.N. Rahaman, A.P. Tomsia, Mater. Sci. Eng. C 31, 1245 (2011)

    Article  CAS  Google Scholar 

  16. H. Cao, N. Kuboyama, Bone 46, 386 (2010)

    Article  CAS  PubMed  Google Scholar 

  17. Y. Nishida, R. Domura, R. Sakai, M. Okamoto, S. Arakawa, R. Ishiki, M.R. Salick, L.-H. Turng, Polymer 56, 73 (2015)

    Article  CAS  Google Scholar 

  18. M. Ebrahimian-Hosseinabadi, F. Ashrafizadeh, M. Etemadifar, S.S. Venkatraman, Polym. Degrad. Stabil. 96, 1940 (2011)

    Article  CAS  Google Scholar 

  19. S.H. Chen, M. Lei, X.-H. Xie, L.-Z. Zheng, D. Yao, X.-L. Wang, W. Li, Z. Zhao, A. Kong, D.-M. Xiao, D.-P. Wang, X.-H. Pan, Y.-X. Wang, L. Qin, Acta Biomater. 9, 6711 (2013)

    Article  CAS  PubMed  Google Scholar 

  20. X. Cai, H. Tong, X. Shen, W. Chen, J. Yan, J. Hu, Acta Biomater. 5, 2693 (2009)

    Article  CAS  PubMed  Google Scholar 

  21. A. Salerno, E.D. Maio, S. Iannace, P.A. Netti, J. Porous. Mater. 19(2), 181 (2012)

    Article  CAS  Google Scholar 

  22. S.J. Hollister, Nat. Mater. 4(7), 518 (2005)

    Article  CAS  PubMed  Google Scholar 

  23. V.L. Tsang, S.N. Bhatia, Adv. Drug Deliv. Rev. 56, 1635 (2004)

    Article  CAS  PubMed  Google Scholar 

  24. E. Chevalier, D. Chulia, C. Pouget, M. Viana, J. Pharm. Sci. 97, 1135 (2008)

    Article  CAS  PubMed  Google Scholar 

  25. W. Cao, L.L. Hench, Ceram. Int. 22(6), 493 (1996)

    Article  CAS  Google Scholar 

  26. R.Z. LeGeros, Clin. Orthop. Relat. Res. 395, 81 (2002)

    Article  Google Scholar 

  27. N.K. Nguyen, M. Leoni, D. Maniglio, C. Migliaresi, J. Biomater. Appl. 28, 49 (2013)

    Article  CAS  PubMed  Google Scholar 

  28. M. Wang, Biomaterials 24, 2133 (2003)

    Article  CAS  PubMed  Google Scholar 

  29. H. Liu, T.J. Webster, Biomaterials 28, 354 (2007)

    Article  CAS  PubMed  Google Scholar 

  30. V. Beachley, X. Wen, Prog. Polym. Sci. 35, 868 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. G. Mendonça, D.B.S. Mendonça, F.J.L. Aragao, L.F. Cooper, Biomaterials 29, 3822 (2008)

    Article  CAS  PubMed  Google Scholar 

  32. N.K. Nga, T.T. Hoai, P.H. Viet, Colloids Surf. B Biointerfaces 128, 506 (2015)

    Article  CAS  PubMed  Google Scholar 

  33. G. Wei, P.X. Ma, Biomaterials 25, 4749 (2004)

    Article  CAS  PubMed  Google Scholar 

  34. G. Chen, T. Ushida, T. Tateishi, Biomaterials 22, 2563 (2001)

    Article  CAS  PubMed  Google Scholar 

  35. F.J. Hua, J.D. Nam, D.S. Lee, Macromol. Rapid Commun. 22, 1053 (2001)

    Article  CAS  Google Scholar 

  36. F.J. Hua, T.G. Park, D.S. Lee, Polymer 44(6), 1911 (2003)

    Article  CAS  Google Scholar 

  37. D.J. Mooney, D.J. Mooney, D.F. Baldwin, N.P. Suh, J.P. Vacanti, R. Langer, Biomaterials 17, 1417 (1996)

    Article  CAS  PubMed  Google Scholar 

  38. K. Whang, C.H. Thomas, K.E. Healy, G. Nuber, Polymer 36, 837 (1995)

    Article  CAS  Google Scholar 

  39. D.W. Hutmacher, J. Biomater. Sci. Polym. Ed. 12, 107 (2001)

    Article  CAS  PubMed  Google Scholar 

  40. D. Puppi, F. Chiellini, A.M. Piras, E. Chiellini, Prog. Polym. Sci. 35, 403–440 (2010)

    Article  CAS  Google Scholar 

  41. N.K. Nga, L.T. Giang, T.Q. Huy, P.H. Viet, Colloids Surf. B Biointerfaces 116, 666 (2014)

    Article  CAS  PubMed  Google Scholar 

  42. G.R. Nakayama, M.C. Caton, M.P. Nova, Z. Parandoosh, J. Immunol. Methods 204, 205 (1997)

    Article  CAS  PubMed  Google Scholar 

  43. B. Li, B. Gou, H. Fan, X. Zhang, Appl. Surf. Sci. 255, 357 (2008)

    Article  CAS  Google Scholar 

  44. Y. Cai, Y. Liu, W. Yan, Q. Hu, J. Tao, M. Zhang, Z. Shi, R. Tang, J. Mater. Chem. 17, 3780 (2007)

    Article  CAS  Google Scholar 

  45. Q.L. Loh, C. Choong, Tissue Eng. Part B Rev. 19, 485 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. V. Karageorgiou, D. Kaplan, Biomaterials 26, 5474 (2005)

    Article  CAS  PubMed  Google Scholar 

  47. E. Nejati, V. Firouzdor, M.B. Eslaminejad, F. Bagheri, Mater. Sci. Eng. C 29, 942 (2009)

    Article  CAS  Google Scholar 

  48. A.A. Hay, F.A. Sheikh, J.K. Lim, Colloids Surf. B Biointerfaces 102, 635 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 104.03-2015.25.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Kim Nga.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoai, T.T., Nga, N.K. Effect of pore architecture on osteoblast adhesion and proliferation on hydroxyapatite/poly(D,L) lactic acid-based bone scaffolds. J IRAN CHEM SOC 15, 1663–1671 (2018). https://doi.org/10.1007/s13738-018-1365-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-018-1365-4

Keywords

Navigation