Journal of the Iranian Chemical Society

, Volume 15, Issue 7, pp 1663–1671 | Cite as

Effect of pore architecture on osteoblast adhesion and proliferation on hydroxyapatite/poly(D,L) lactic acid-based bone scaffolds

  • Tran Thanh Hoai
  • Nguyen Kim Nga
Original Paper


The fabrication of three-dimensional (3D) scaffolds with an optimal pore architecture (e.g., pore size and porosity) that effectively promotes cellular activity on scaffold surfaces is of great interest in bone tissue engineering. In this work, three various 3D hydroxyapatite/poly(D,L)-lactic acid (HAp/PDLLA) scaffolds with different values of HAp to PDLLA in weight percent (0, 10, and 30%) were fabricated by applying a solvent casting–particulate leaching technique. Chloroform was used as a casting solvent to investigate the effects of pore architecture on cellular adhesion, distribution, and proliferation on the fabricated scaffolds. These scaffolds were characterized through field-emission scanning electron microscopy, X-ray diffraction, and liquid substitution to determine their structure, morphological characteristics, pore sizes, and porosity. Cell proliferation, adhesion, and distribution on these scaffolds were evaluated through in vitro tests with human osteoblast MG 63 cell line. Results showed that pore size and porosity greatly affected the proliferation, adhesion, and distribution of MG 63 cells on the fabricated scaffolds. Mean pore sizes ranging from 177 to 245 µm and porosities varying from 76 to 83% were optimal for cell proliferation and adhesion on these scaffolds. Among the fabricated scaffolds, 3D HAp/PDLLA scaffolds with 10% (m/m) HAp to PDLLA exhibited the highest cell adhesion and good cell proliferation capabilities and formed a well-organized cytoskeleton architecture after 7 days of culture. Hence, 3D HAp/PDLLA scaffolds as biomaterials showed potential for bone tissue applications.


Bone scaffold Pore architecture Cellular adhesion Cellular proliferation 



This study was funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 104.03-2015.25.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    A.W.T. Shum, A.F.T. Mak, Poly. Degrad. Stabil. 81, 141 (2003)CrossRefGoogle Scholar
  2. 2.
    Z. Xiong, Y. Yan, R. Zhang, L. Sun, Scr. Mater. 45, 773 (2001)CrossRefGoogle Scholar
  3. 3.
    Q. Liu, S. Tian, C. Zhao, X. Chen, L. Lei, Z. Wang, P.X. Ma, Acta Biomater. 26, 105 (2015)CrossRefGoogle Scholar
  4. 4.
    T. Nie, L. Xue, M. Ge, H. Ma, Mater. Lett. 176, 25 (2016)CrossRefGoogle Scholar
  5. 5.
    F.J. Hua, T.G. Park, D.S. Lee, Polymer 44, 1911 (2003)CrossRefGoogle Scholar
  6. 6.
    R.J. Kane, H.E. Weiss-Bilka, M.J. Meagher, Y. Liu, J.A. Gargac, G.L. Niebur, D.R. Wagner, R.K. Roeder, Acta Biomater. 17, 16 (2015)CrossRefGoogle Scholar
  7. 7.
    H.-W. Kang, Y. Tabata, Y. Ikada, Biomaterials 20, 1339 (1999)CrossRefGoogle Scholar
  8. 8.
    X. Li, L. Jin, G. Balian, C.T. Laurencin, D.G. Anderson, Biomaterials 27, 2426 (2006)CrossRefGoogle Scholar
  9. 9.
    P. de la Puente, D. Ludeña, Exp. Cell Res. 322, 1 (2014)CrossRefGoogle Scholar
  10. 10.
    Y.I. Yang, D.L. Seol, H.I. Kim, M.H. Cho, S.J. Lee, Curr. Appl. Phys. 7, e103 (2007)CrossRefGoogle Scholar
  11. 11.
    G. Cervi, F. Peri, C. Battistini, C. Gennari, F. Nicotra, Bioorg. Med. Chem. 14, 3349 (2006)CrossRefGoogle Scholar
  12. 12.
    H.R. Ramay, M. Zhang, Biomaterials 24, 3293 (2003)CrossRefGoogle Scholar
  13. 13.
    S. Deville, E. Saiz, A.P. Tomsia, Biomaterials 27, 5480 (2006)CrossRefGoogle Scholar
  14. 14.
    C.F.L. Santos, A.P. Silva, L. Lopes, I. Pires, I.J. Correia, Mater. Sci. Eng. C 32, 1293 (2012)CrossRefGoogle Scholar
  15. 15.
    Q. Fu, E. Saiz, M.N. Rahaman, A.P. Tomsia, Mater. Sci. Eng. C 31, 1245 (2011)CrossRefGoogle Scholar
  16. 16.
    H. Cao, N. Kuboyama, Bone 46, 386 (2010)CrossRefGoogle Scholar
  17. 17.
    Y. Nishida, R. Domura, R. Sakai, M. Okamoto, S. Arakawa, R. Ishiki, M.R. Salick, L.-H. Turng, Polymer 56, 73 (2015)CrossRefGoogle Scholar
  18. 18.
    M. Ebrahimian-Hosseinabadi, F. Ashrafizadeh, M. Etemadifar, S.S. Venkatraman, Polym. Degrad. Stabil. 96, 1940 (2011)CrossRefGoogle Scholar
  19. 19.
    S.H. Chen, M. Lei, X.-H. Xie, L.-Z. Zheng, D. Yao, X.-L. Wang, W. Li, Z. Zhao, A. Kong, D.-M. Xiao, D.-P. Wang, X.-H. Pan, Y.-X. Wang, L. Qin, Acta Biomater. 9, 6711 (2013)CrossRefGoogle Scholar
  20. 20.
    X. Cai, H. Tong, X. Shen, W. Chen, J. Yan, J. Hu, Acta Biomater. 5, 2693 (2009)CrossRefGoogle Scholar
  21. 21.
    A. Salerno, E.D. Maio, S. Iannace, P.A. Netti, J. Porous. Mater. 19(2), 181 (2012)CrossRefGoogle Scholar
  22. 22.
    S.J. Hollister, Nat. Mater. 4(7), 518 (2005)CrossRefGoogle Scholar
  23. 23.
    V.L. Tsang, S.N. Bhatia, Adv. Drug Deliv. Rev. 56, 1635 (2004)CrossRefGoogle Scholar
  24. 24.
    E. Chevalier, D. Chulia, C. Pouget, M. Viana, J. Pharm. Sci. 97, 1135 (2008)CrossRefGoogle Scholar
  25. 25.
    W. Cao, L.L. Hench, Ceram. Int. 22(6), 493 (1996)CrossRefGoogle Scholar
  26. 26.
    R.Z. LeGeros, Clin. Orthop. Relat. Res. 395, 81 (2002)CrossRefGoogle Scholar
  27. 27.
    N.K. Nguyen, M. Leoni, D. Maniglio, C. Migliaresi, J. Biomater. Appl. 28, 49 (2013)CrossRefGoogle Scholar
  28. 28.
    M. Wang, Biomaterials 24, 2133 (2003)CrossRefGoogle Scholar
  29. 29.
    H. Liu, T.J. Webster, Biomaterials 28, 354 (2007)CrossRefGoogle Scholar
  30. 30.
    V. Beachley, X. Wen, Prog. Polym. Sci. 35, 868 (2010)CrossRefGoogle Scholar
  31. 31.
    G. Mendonça, D.B.S. Mendonça, F.J.L. Aragao, L.F. Cooper, Biomaterials 29, 3822 (2008)CrossRefGoogle Scholar
  32. 32.
    N.K. Nga, T.T. Hoai, P.H. Viet, Colloids Surf. B Biointerfaces 128, 506 (2015)CrossRefGoogle Scholar
  33. 33.
    G. Wei, P.X. Ma, Biomaterials 25, 4749 (2004)CrossRefGoogle Scholar
  34. 34.
    G. Chen, T. Ushida, T. Tateishi, Biomaterials 22, 2563 (2001)CrossRefGoogle Scholar
  35. 35.
    F.J. Hua, J.D. Nam, D.S. Lee, Macromol. Rapid Commun. 22, 1053 (2001)CrossRefGoogle Scholar
  36. 36.
    F.J. Hua, T.G. Park, D.S. Lee, Polymer 44(6), 1911 (2003)CrossRefGoogle Scholar
  37. 37.
    D.J. Mooney, D.J. Mooney, D.F. Baldwin, N.P. Suh, J.P. Vacanti, R. Langer, Biomaterials 17, 1417 (1996)CrossRefGoogle Scholar
  38. 38.
    K. Whang, C.H. Thomas, K.E. Healy, G. Nuber, Polymer 36, 837 (1995)CrossRefGoogle Scholar
  39. 39.
    D.W. Hutmacher, J. Biomater. Sci. Polym. Ed. 12, 107 (2001)CrossRefGoogle Scholar
  40. 40.
    D. Puppi, F. Chiellini, A.M. Piras, E. Chiellini, Prog. Polym. Sci. 35, 403–440 (2010)CrossRefGoogle Scholar
  41. 41.
    N.K. Nga, L.T. Giang, T.Q. Huy, P.H. Viet, Colloids Surf. B Biointerfaces 116, 666 (2014)CrossRefGoogle Scholar
  42. 42.
    G.R. Nakayama, M.C. Caton, M.P. Nova, Z. Parandoosh, J. Immunol. Methods 204, 205 (1997)CrossRefGoogle Scholar
  43. 43.
    B. Li, B. Gou, H. Fan, X. Zhang, Appl. Surf. Sci. 255, 357 (2008)CrossRefGoogle Scholar
  44. 44.
    Y. Cai, Y. Liu, W. Yan, Q. Hu, J. Tao, M. Zhang, Z. Shi, R. Tang, J. Mater. Chem. 17, 3780 (2007)CrossRefGoogle Scholar
  45. 45.
    Q.L. Loh, C. Choong, Tissue Eng. Part B Rev. 19, 485 (2013)CrossRefGoogle Scholar
  46. 46.
    V. Karageorgiou, D. Kaplan, Biomaterials 26, 5474 (2005)CrossRefGoogle Scholar
  47. 47.
    E. Nejati, V. Firouzdor, M.B. Eslaminejad, F. Bagheri, Mater. Sci. Eng. C 29, 942 (2009)CrossRefGoogle Scholar
  48. 48.
    A.A. Hay, F.A. Sheikh, J.K. Lim, Colloids Surf. B Biointerfaces 102, 635 (2013)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  1. 1.School of Chemical EngineeringHanoi University of Science and TechnologyHanoiVietnam

Personalised recommendations