Journal of the Iranian Chemical Society

, Volume 15, Issue 7, pp 1527–1534 | Cite as

Ag nanoparticles for determination of bisphenol A by resonance light-scattering technique

  • Masoumeh Pirdadeh-Beiranvand
  • Abbas Afkhami
  • Tayyebeh Madrakian
Original Paper
  • 18 Downloads

Abstract

Resonance light-scattering (RLS) technique was developed for studying the interaction of silver nanoparticles (Ag NPs) with bisphenol A. A simple and environmentally friendly method was developed to synthesize Ag NPs using cinnamon extract. Synthesized nanoparticles were characterized using various measurement techniques. The synthesized Ag NPs were nearly spherical, with the sizes ranging from 30 to 60 nm. Spectral analysis indicated that the cinnamon extract acted as the reducing and capping agents on the surface of Ag NPs. RLS technique was used as the detection method. Light-scattering properties of the synthesized nanoparticles in the presence or absence of bisphenol A was selected as the detection signal. Under the optimal conditions, the linear dynamic range and RSD were found to be 0.01–10.0 mg L−1 and 2.78% (n = 3), respectively. A limit of detection of 0.005 mg L−1 was obtained for the determination of bisphenol A. The obtained results showed successful application of the method for the analysis of bisphenol A in real samples.

Keywords

Silver nanoparticles Bisphenol A determination Resonance Rayleigh scattering Cinnamon extract Baby milk bottles Milk 

Notes

Acknowledgements

The Bu-Ali Sina University Research Council and Center of Excellence in Development of Environmentally Friendly Methods for Chemical Synthesis (CEDEFMCS) financially supported this work, and the authors acknowledge that for providing financial resource to this work.

References

  1. 1.
    T. Madrakian, A. Afkhami, E. Vanaei, M. Ahmadi, Anal. Methods 7, 6299 (2015)CrossRefGoogle Scholar
  2. 2.
    L. Molina-García, M.L. Fernández-de Córdova, A. Ruiz-Medina, Talanta 96, 195 (2012)CrossRefGoogle Scholar
  3. 3.
    J. Peretz, L. Vrooman, W.A. Ricke, P.A. Hunt, S. Ehrlich, R. Hauser, V. Padmanabhan, H.S. Taylor, S.H. Swan, C.A. VandeVoort, Environ. Health Perspect. 122, 775 (2014)Google Scholar
  4. 4.
    N. Dorival-García, A. Zafra-Gómez, A. Navalón, J. Vílchez, Talanta 101, 1 (2012)CrossRefGoogle Scholar
  5. 5.
    K. Inoue, K. Kato, Y. Yoshimura, T. Makino, H. Nakazawa, J. Chromatogr. B 749, 17 (2000)CrossRefGoogle Scholar
  6. 6.
    M. Kawaguchi, K. Inoue, M. Yoshimura, R. Ito, N. Sakui, N. Okanouchi, H. Nakazawa, J. Chromatogr. B 805, 41 (2004)CrossRefGoogle Scholar
  7. 7.
    D. Yao, A. Liang, W. Yin, Z. Jiang, Luminescence 29, 516 (2014)CrossRefGoogle Scholar
  8. 8.
    Z. Mei, H. Chu, W. Chen, F. Xue, J. Liu, H. Xu, R. Zhang, L. Zheng, Biosens. Bioelectron. 39, 26 (2013)CrossRefGoogle Scholar
  9. 9.
    Z. Mei, W. Qu, Y. Deng, H. Chu, J. Cao, F. Xue, L. Zheng, H.S. El-Nezamic, Y. Wu, W. Chen, Biosens. Bioelectron. 49, 457 (2013)CrossRefGoogle Scholar
  10. 10.
    R.F. Pasternack, C. Bustamante, P.J. Collings, A. Giannetto, E.J. Gibbs, J. Am. Chem. Soc. 115, 5393 (1993)CrossRefGoogle Scholar
  11. 11.
    M. Ahmadi, T. Madrakian, A. Afkhami, Anal. Chim. Acta 852, 250 (2014)CrossRefGoogle Scholar
  12. 12.
    Z. Chen, T. Song, S. Wang, X. Chen, J. Chen, Y. Li, Biosens. Bioelectron. 25, 1947 (2010)CrossRefGoogle Scholar
  13. 13.
    Z. Chen, T. Song, Y. Peng, X. Chen, J. Chen, G. Zhang, S. Qian, Analyst 136, 3927 (2011)CrossRefGoogle Scholar
  14. 14.
    F. Fazl, M. Ahmadi, T. Madrakian, A. Afkhami, Sens. Actuators, B 223, 379 (2016)CrossRefGoogle Scholar
  15. 15.
    L. Yu, Y. Zhang, R. Chen, D. Zhang, X. Wei, F. Chen, J. Wang, M. Xu, Talanta 131, 475 (2015)CrossRefGoogle Scholar
  16. 16.
    H. Cao, M. Wei, Z. Chen, Y. Huang, Analyst 138, 2420 (2013)CrossRefGoogle Scholar
  17. 17.
    J. Dong, A. Liang, Y. Luo, Z. Jiang, Arab. J. Chem. (2015).  https://doi.org/10.1016/j.arabjc.2015.02.020 Google Scholar
  18. 18.
    Z. Chen, J. Liu, Y. Han, Talanta 71, 1246 (2007)CrossRefGoogle Scholar
  19. 19.
    J. Zhu, Y. Wang, L. Huang, Y. Lu, Phys. Lett. A 323, 455 (2004)CrossRefGoogle Scholar
  20. 20.
    H. Jiang, Z. Chen, H. Cao, Y. Huang, Analyst 137, 5560 (2012)CrossRefGoogle Scholar
  21. 21.
    Z. Chen, X. Zhang, H. Cao, Y. Huang, Analyst 138, 2343 (2013)CrossRefGoogle Scholar
  22. 22.
    A. Afkhami, S. Sayari, R. Moosavi, T. Madrakian, J. Ind. Eng. Chem. 21, 920 (2015)CrossRefGoogle Scholar
  23. 23.
    T. Madrakian, A. Afkhami, H. Mahmood-Kashani, M. Ahmadi, Talanta 105, 255 (2013)CrossRefGoogle Scholar
  24. 24.
    R. Moosavi, S. Ramanathan, Y.Y. Lee, K.C.S. Ling, A. Afkhami, G. Archunan, P. Padmanabhan, B. Gulyás, M. Kakran, S.T. Selvan, RSC Adv. 5, 76442 (2015)CrossRefGoogle Scholar
  25. 25.
    K.J. Rao, S. Paria, ACS Sustain. Chem. Eng. 3, 483 (2015)CrossRefGoogle Scholar
  26. 26.
    Y. Zhang, D. Yang, Y. Kong, X. Wang, O. Pandoli, G. Gao, Nano Biomed. Eng. 2, 252 (2010)Google Scholar
  27. 27.
    H. Parham, S. Saeed, Talanta 131, 570 (2015)CrossRefGoogle Scholar
  28. 28.
    T. Wriedt, Mie theory: a review, in ed. by W. Hergert, T. Wriedt. The Mie Theory, vol. 169 of Springer Series in Optical Sciences (Springer, Berlin, Germany, 2012)Google Scholar
  29. 29.
    H. Parham, N. Pourreza, F. Marahel, Talanta 141, 143 (2015)CrossRefGoogle Scholar
  30. 30.
    T. Madrakian, M. Ahmadi, A. Afkhami, M. Soleimani, Analyst 138, 4542 (2013)CrossRefGoogle Scholar
  31. 31.
    Z.J. Tan, F.F. Li, J. Cent. South Univ. 19, 2136 (2012)CrossRefGoogle Scholar
  32. 32.
    P. Viñas, I. López-García, N. Campillo, R.E. Rivas, M. Hernández-Córdoba, Anal. Bioanal. Chem. 404, 671 (2012)CrossRefGoogle Scholar
  33. 33.
    N. Yildirim, F. Long, M. He, H.-C. Shi, A.Z. Gu, Environ. Sci. Technol. 16, 1379 (2014)Google Scholar
  34. 34.
    S. Cunha, J. Fernandes, Talanta 83, 117 (2010)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  1. 1.Faculty of ChemistryBu-Ali Sina UniversityHamedanIran

Personalised recommendations