Advertisement

Journal of the Iranian Chemical Society

, Volume 15, Issue 7, pp 1513–1525 | Cite as

Hollow nanoshell-sphere Fe@Fe/Pd reactors: a magnetically recoverable catalyst for the Csp–S cross-coupling reactions in water

  • Parvaneh Ghaderi-Shekhi Abadi
  • Ezzat Rafiee
  • Mohammad Joshaghani
Original Paper
  • 36 Downloads

Abstract

The hollow Pd–PVP–Fe nanosphere and Fe–PVP nanoparticle catalysts were synthesized by thermal method. Mixing of two metallic nanocatalysts was applied in the Csp–S cross-coupling reactions between diphenyl disulfide and phenylacetylene under mild conditions in water. Results show that bi-catalytic system has higher catalytic efficiencies than their monocatalytic systems due to synergy between two catalysts. Order of adding two metallic catalysts were adjusted into the coupling reaction medium. Therefore, various bi-catalytic systems were obtained and characterized by XRD, SEM, EBSD, EDX, UV–Vis spectra, and particle size analyzer. Under special order of adding, the obtained hollow nanoshell-sphere Fe@Fe/Pd reactor showed higher catalytic activity in the coupling reaction compared to other bi-catalytic systems. The Csp–S coupling products obtained of various diaryl disulfides and phenylacetylene at presence Fe@Fe/Pd (only 7.3 × 10−5 mmol Pd) catalyst with moderate to high yields in water solvent and mild reaction conditions. After the reaction, the catalyst/product(s) separation could be easily achieved with an external magnet and more than 95% of catalyst could be recovered. The recovered catalyst was characterized by XRD, SEM, EBSD, EDX, and UV–Vis spectra. The Fe@Fe/Pd was reused at least six repeating cycles without any loss of its high catalytic activity. Tuning morphology and chemical composition of bi-catalytic system are key mainstays of high activity of Fe@Fe/Pd in repeating cycles of cross-coupling reactions.

Keywords

Palladium/iron Heterometallic nanocatalyst Hollow nanoshell-sphere reactors Magnetically recoverable catalyst Csp–S cross-coupling reactions 

Notes

Acknowledgements

The authors thank the Razi University Research Council for support of this work.

References

  1. 1.
    R.A.E. Sheldon, Chem. Commun. 3352 (2008)Google Scholar
  2. 2.
    P.T. Anastas, M.M. Kirchhoff, Acc. Chem. Res. 35, 686 (2002)CrossRefGoogle Scholar
  3. 3.
    P.T. Anastas, J.C. Warner, Green Chemistry: Theory and Practice; Oxford University Press (Oxford, UK, 1998)Google Scholar
  4. 4.
    T. Zeng, L. Yang, R. Hudson, G. Song, A.R. Moores, C.J. Li, Org. Lett. 13(3), 442 (2011)CrossRefGoogle Scholar
  5. 5.
    P.H. Lee, Y. Park, S. Park, E. Lee, S. Kim, J. Org. Chem. 76, 760 (2011)CrossRefGoogle Scholar
  6. 6.
    R.M. Chowdhurya, J.D. Wilden, Biomol. Chem. 13, 5859 (2015)CrossRefGoogle Scholar
  7. 7.
    G. Mann, D. Baranano, J.F. Hartwig, A.L. Rheingold, I.A. Guzei, J. Am. Chem. Soc. 120, 9205 (1998)CrossRefGoogle Scholar
  8. 8.
    M. Arisawa, K. Fujimoto, S. Morinaka, M. Yamaguchi, J. Am. Chem. Soc. 127, 12226 (2005)CrossRefGoogle Scholar
  9. 9.
    H. Zhang, T. Watanabe, M. Okumura, M. Haruta, N. Toshima, Nat. Mater. 11, 49 (2012)CrossRefGoogle Scholar
  10. 10.
    G. Kyriakou, M.B. Boucher, A.D. Jewell, E.A. Lewis, T.J. Lawton, A.E. Baber, H.L. Tierney, M. FlytzaniStephanopoulos, E.C.H. Sykes, Science 335, 1209 (2012)CrossRefGoogle Scholar
  11. 11.
    F.R. Lucci, J.L. Liu, M.D. Marcinkowski, M. Yang, L.F. Allard, M. FlytzaniStephanopoulos, E.C.H. Sykes, Nat. Commun. 6, 8850 (2015)CrossRefGoogle Scholar
  12. 12.
    J. Liu, F.R. Lucci, M. Yang, S. Lee, M.D. Marcinkowski, A.J. Therrien, C.T. Williams, E.C.H. Sykes, M. FlytzaniStephanopoulos, J. Am. Chem. Soc. 138, 6396 (2016)CrossRefGoogle Scholar
  13. 13.
    P. Aich, H. Wei, B. Basan, A.J. Kropf, N.M. Schweitzer, C.L. Marshall, J.T. Miller, R. Meyer, J. Phys. Chem. C 119, 18140 (2015)CrossRefGoogle Scholar
  14. 14.
    G.X. Pei, X.Y. Liu, A. Wang, A.F. Lee, M.A. Isaacs, L. Li, X. Pan, X. Yang, X. Wang, Z. Tai, K. Wilson, T. Zhang, ACS. Catal. 5, 3717 (2015)CrossRefGoogle Scholar
  15. 15.
    H.L. Tierney, A.E. Baber, J.R. Kitchin, E.C.H. Sykes, Phys. Rev. Lett. 103, 246102 (2009)CrossRefGoogle Scholar
  16. 16.
    S.E.A. Gratton, P.A. Ropp, P.D. Pohlhaus, J.C. Luft, V.J. Madden, M.E. Napier, J.M. DeSimone, Proc. Natl. Acad. Sci. USA 105, 11613 (2008)CrossRefGoogle Scholar
  17. 17.
    J. Magano, J.R. Dunetz, Chem. Rev. 111(3), 2177 (2011)CrossRefGoogle Scholar
  18. 18.
    D.Y. Yang, X. Huang, J. Organometal. Chem. 543, 165 (1997)CrossRefGoogle Scholar
  19. 19.
    N. Cockburn, E. Karimi, W.R. Tam, J. Org. Chem. 74, 5762 (2009)CrossRefGoogle Scholar
  20. 20.
    C. Savarin, J. Srogl, L.S. Liebeskind, Org. Lett. 3, 91 (2001)CrossRefGoogle Scholar
  21. 21.
    H. Takeda, S. Shimada, S. Ohnishi, F. Nakanishi, H. Matsuda, Tetrahedron Lett. 39, 3701 (1998)CrossRefGoogle Scholar
  22. 22.
    D.S. Rampon, R. Giovenardi, T.L. Silva, R.S. Rambo, A.A. Merlo, P.H. Schneider, Eur. J. Org. Chem. 7066 (2011)Google Scholar
  23. 23.
    L.W. Bieber, M.F. Silva, P.H. Menezes, Tetrahedron Lett. 45, 2735 (2004)CrossRefGoogle Scholar
  24. 24.
    A. Kundu, S. Roy, Organometallics 19, 105 (2000)CrossRefGoogle Scholar
  25. 25.
    S. Tomoda, K. Kimura, Chem. Phy. Lett. 102, 560 (1983)CrossRefGoogle Scholar
  26. 26.
    P. Ghaderi-Shekhi Abadi, E. Rafiee, M. Joshaghani, Inorg. Chim. Acta 451, 162 (2016)CrossRefGoogle Scholar
  27. 27.
    X.M. Wu, J.J. Mo, Lett. Org. Chem. 9, 749 (2012)CrossRefGoogle Scholar
  28. 28.
    H.J. Xu, Y.F. Liang, X.F. Zhoua, Y.S. Feng, Org. Biomol. Chem. 10, 2562 (2012)CrossRefGoogle Scholar
  29. 29.
    E. Rafiee, M. Joshaghani, P. Ghaderi-Shekhi Abadi, RSC. Adv. 5, 74091 (2015)Google Scholar
  30. 30.
    P. Ghaderi-Shekhi Abadi, E. Rafiee, M. Joshaghani, ChemNanoMat. (2018).  https://doi.org/10.1002/cnma.201700359 Google Scholar
  31. 31.
    P. Ghaderi-Shekhi Abadi, E. Rafiee, Sh Nadri, G. Hajian, M. Joshaghani, Appl. Catal. A-Gen. 487, 139 (2014)CrossRefGoogle Scholar
  32. 32.
    N. Taniguchi, Tetrahedron 65, 2782 (2009)CrossRefGoogle Scholar
  33. 33.
    J.E. Song, T. Phenrat, S. Marinakos, Y. Xiao, J. Liu, M.R. Wiesner, R.D. Tilton, G.V. Lowry, Environ. Sci. Technol. 45, 5988 (2011)CrossRefGoogle Scholar
  34. 34.
    A.M.E. Badawy, T.P. Luxton, R.G. Silva, K.G. Scheckel, M.T. Suidan, T.M. Tolaymat, Environ. Sci. Technol. 44, 1260 (2010)CrossRefGoogle Scholar
  35. 35.
    B.W. Zhu, T.T. Lim, J. Feng, Chemosphere 65, 1137 (2006)CrossRefGoogle Scholar
  36. 36.
    A.L. Braga, A. Reckziegel, P.H. Menezes, H.A. Stefani, Tetrahedron Lett. 34, 393 (1993)CrossRefGoogle Scholar
  37. 37.
    K. Mishra, N. Basavegowda, Y.R. Lee, Catal. Sci. Technol. (2015).  https://doi.org/10.1039/c5cy00099h Google Scholar
  38. 38.
    Y.Y. Lin, Y.J. Wang, C.H. Lin, J.H. Cheng, C.F. Lee, J. Org. Chem. 77, 6100 (2012)CrossRefGoogle Scholar
  39. 39.
    J. Lai, R. Luque, G. Xu, ChemCatChem. 7, 3206 (2015)CrossRefGoogle Scholar
  40. 40.
    E. Rafiee, M. Joshaghani, P. Ghaderi-Shekhi, Abadi. J. Magn. Magn. Mater. 408, 107 (2016)CrossRefGoogle Scholar
  41. 41.
    A. Bastos, S. Zaefferer, D. Raabe, C. Schuh, Acta. Mate. 54, 2451 (2006)CrossRefGoogle Scholar
  42. 42.
    R. Gerber, C.M. Frech, Chem. Eur. J. 18, 8901 (2012)CrossRefGoogle Scholar
  43. 43.
    J.Y. Lee, P.H. Lee, J. Org. Chem. 73, 7413 (2008)CrossRefGoogle Scholar
  44. 44.
    C. C. Eichman, J. P. Stambuli J. Org. Chem. 74, 4005 (2009)Google Scholar
  45. 45.
    D. Baranano, J.F. Hartwig, J. Am. Chem. Soc. 117, 2937–2938 (1995)CrossRefGoogle Scholar
  46. 46.
    M.A. FernándezRodríguez, J.F. Hartwig, J. Org. Chem. 74, 1663 (2009)CrossRefGoogle Scholar
  47. 47.
    M.Y. Darensbourg, W.F. Liaw, C.G. Riordan, J. Am. Chem. Soc. 111, 8051 (1989)CrossRefGoogle Scholar
  48. 48.
    U.E. Steiner, T. Ulrich, Chem. Rev. 89, 51 (1989)CrossRefGoogle Scholar
  49. 49.
    Y. Liang, Y.X. Xie, J.H. Li, J. Org. Chem. 71, 379 (2006)CrossRefGoogle Scholar
  50. 50.
    Y. Yang, W. Dong, Y. Guo, R.M. Rioux, Green Chem. 15, 3170 (2013)CrossRefGoogle Scholar
  51. 51.
    Z. Fang, W. He, M. Cai, Y. Lin, H. Zhao, Tetrahedron Lett. (2015).  https://doi.org/10.1016/j.tetlet.2015.09.153 Google Scholar
  52. 52.
    B. Movassagh, A. Yousefi, B.Z. Momeni, S.A. Heydari, Synlett 25, 1385 (2014)CrossRefGoogle Scholar
  53. 53.
    A.L. Braga, C.C. Silveira, A. Reckziegel, P.H. Menezes, Tetrahedron Lett. 34, 8041 (1993)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  • Parvaneh Ghaderi-Shekhi Abadi
    • 2
  • Ezzat Rafiee
    • 1
    • 2
  • Mohammad Joshaghani
    • 1
    • 2
  1. 1.Department of Inorganic Chemistry, Faculty of ChemistryRazi UniversityKermanshahIran
  2. 2.Institute of Nanoscience and NanotechnologyRazi UniversityKermanshahIran

Personalised recommendations