Advertisement

Journal of the Iranian Chemical Society

, Volume 15, Issue 7, pp 1485–1494 | Cite as

Surface modification of glassy carbon electrode with the functionalized carbon nanotube for ultrasensitive electrochemical detection of risperidone

  • Saeed Shahrokhian
  • Mohammad Hafezi Kahnamoui
  • Razieh Salimian
Original Paper
  • 63 Downloads

Abstract

Risperidone (RIS), one of the typical antipsychotics drugs, originally approved to be used for the mental illness treatment, especially schizophrenia, bipolar disorder, autism and major depression. In the present study, different carbon nanostructures including functionalized multi-walled carbon nanotubes (F-MWCNTs), carbon nanoparticles, nanodiamond-graphite and reduced graphene oxide were employed for modification of the surface of glassy carbon electrode (GCE) for ultrasensitive detection of RIS. The most significant increase in the anodic peak current of RIS was observed on F-MWCNTs-modified electrode (compared to the other modified electrodes and bare GCE). The influence of different experimental parameters such as pH of the buffered solutions, the amount of the modifier and time and potential of the accumulation was optimized by monitoring the LSV responses toward RIS for the selected modified electrode. A wide linear dynamic range of 0.04–7 µM with a low detection limit of 12 nM was obtained. The results exhibit an acceptable performance of the proposed electrode for determination of RIS in the pharmaceutical and clinical preparations.

Keywords

Carbon nanostructures Multi-walled carbon nanotube Modified electrode Risperidone Voltammetric determination 

Notes

Acknowledgements

The authors gratefully acknowledge the support of this work by the Research Council and of Sharif University of Technology, Tehran, Iran.

Supplementary material

13738_2018_1346_MOESM1_ESM.docx (194 kb)
Supplementary material 1 (DOCX 195 kb)

References

  1. 1.
    M.C. Cappadocia, M. Desrocher, D. Pepler, J.H. Schroeder, Clin. Psychol. Rev. 29, 506–518 (2009)CrossRefGoogle Scholar
  2. 2.
    R. Riva, L. Banfi, G. Castaldi, D. Ghislieri, L. Malpezzi, F. Musumeci, M. Rasparini, Eur. J. Org. Chem. 12, 2319–2325 (2011)CrossRefGoogle Scholar
  3. 3.
    J.E. Leysen, W. Gommeren, A. Eens, D.D.C. De Courcelles, J.C. Stoof, P.A. Janssen, J. Pharmacol. Exp. Ther. 247, 661–670 (1988)Google Scholar
  4. 4.
    A. Avenoso, G. Facciola, M. Salemi, E. Spina, J. Chromatogr. B 746, 173–181 (2000)CrossRefGoogle Scholar
  5. 5.
    A. Claus, J. Bollen, H.D. Cuyper, M. Eneman, M. Malfroid, J. Peuskens, S. Heylen, Acta Psychiatr. Scand. 85, 295–305 (1992)CrossRefGoogle Scholar
  6. 6.
    S.N. Ghaemi, G.S. Sachs, C.F. Baldassano, C.J. Truman, Can. J. Psychiatry 42, 196–199 (1997)CrossRefGoogle Scholar
  7. 7.
    L. Scahill, J.F. Leckman, R.T. Schultz, L. Katsovich, B.S. Peterson, Neurology 60, 1130–1135 (2003)CrossRefGoogle Scholar
  8. 8.
    Y.L. Shen, H.L. Wu, W.K. Ko, S.M. Wu, Anal. Chim. Acta 460, 201–208 (2002)CrossRefGoogle Scholar
  9. 9.
    K.M. Kirschbaum, S. Finger, F. Vogel, R. Burger, M. Gerlach, P. Riederer, C. Hiemke, Chromatographia 67, 321–324 (2008)CrossRefGoogle Scholar
  10. 10.
    M.A. Raggi, F. Bugamelli, C. Sabbioni, M.A. Saracino, C. Petio, J. Sep. Sci. 28, 245–250 (2005)CrossRefGoogle Scholar
  11. 11.
    M. Aravagiri, S.R. Marder, J. Mass Spectrom. 35, 718–724 (2000)CrossRefGoogle Scholar
  12. 12.
    C. Danel, C. Barthélémy, D. Azarzar, H. Robert, J.P. Bonte, P. Odou, C. Vaccher, J. Chromatogr. A 1163, 228–236 (2007)CrossRefGoogle Scholar
  13. 13.
    J. Flarakos, W. Luo, M. Aman, D. Svinarov, N. Gerber, P. Vouros, J. Chromatogr. A 1026, 175–183 (2004)CrossRefGoogle Scholar
  14. 14.
    I. Locatelli, A. Mrhar, I. Grabnar, J. Pharm. Biomed. Anal. 50, 905–910 (2009)CrossRefGoogle Scholar
  15. 15.
    M.A. Saracino, A. de Palma, G. Boncompagni, M.A. Raggi, Talanta 81, 1547–1553 (2010)CrossRefGoogle Scholar
  16. 16.
    L.N. Williamson, G. Zhang, A.V. Terry Jr., M.G. Bartlett, J. Liq. Chromatogr. Relat. Technol. 31, 2737–2751 (2008)CrossRefGoogle Scholar
  17. 17.
    D. Merli, D. Dondi, M. Pesavento, A. Profumo, J. Electroanal. Chem. 683, 103–111 (2012)CrossRefGoogle Scholar
  18. 18.
    A. Afkhami, H. Ghaedi, Anal. Methods 4, 1415–1420 (2012)CrossRefGoogle Scholar
  19. 19.
    I.H. Taşdemir, O. Çakirer, N. Erk, E. Kiliç, Collect. Czech. Chem. Commun. 76, 159–176 (2011)CrossRefGoogle Scholar
  20. 20.
    Z. Meng, J. Zheng, X. Zhu, Acta Chim. Sin. 63, 827 (2005)Google Scholar
  21. 21.
    M. Arvand, M.S. Ardaki, M.A. Zanjanchi, RSC Adv. 5, 40578–40587 (2015)CrossRefGoogle Scholar
  22. 22.
    E. Molaakbari, A. Mostafavi, Z. Tohidiyan, H. Beitollahi, J. Electroanal. Chem. 801, 198–205 (2017)CrossRefGoogle Scholar
  23. 23.
    M. Gu, Q. Zhang, S. Lamon, Nat. Rev. Mater. 1, 16070 (2016)CrossRefGoogle Scholar
  24. 24.
    M. Wang, C. Su, T. Yu, L.S. Tan, B. Hu, A. Urbas, L.Y. Chiang, Nanoscale 8, 6589–6599 (2016)CrossRefGoogle Scholar
  25. 25.
    X.X. Yang, C.M. Li, C.Z. Huang, Nanoscale 8, 3040–3048 (2016)CrossRefGoogle Scholar
  26. 26.
    J. Lang, Y. Fang, Q. Zhang, J. Wang, T. Li, X. Li, J. Yang, Appl. Phys. A 122, 873 (2016)CrossRefGoogle Scholar
  27. 27.
    V. Biju, Chem. Soc. Rev. 43, 744–764 (2014)CrossRefGoogle Scholar
  28. 28.
    G. Maduraiveeran, W. Jin, Trends Anal. Chem. 82, 175–190 (2016)CrossRefGoogle Scholar
  29. 29.
    C.M. Welch, R.G. Compton, Anal. Bioanal. Chem. 384, 601–619 (2006)CrossRefGoogle Scholar
  30. 30.
    M. Akanda, M. Sohail, M. Aziz, A.N. Kawde, Electroanalysis 28, 408–424 (2016)CrossRefGoogle Scholar
  31. 31.
    M. Amiri-Aref, J.B. Raoof, R. Ojani, Ionics 22, 125–134 (2016)CrossRefGoogle Scholar
  32. 32.
    S. Chakraborty, C.R. Raj, Carbon 48, 3242–3249 (2010)CrossRefGoogle Scholar
  33. 33.
    C. Zhang, H. Jiang, R. Ma, Y. Zhang, Q. Chen, Ionics 23, 1309–1317 (2017)CrossRefGoogle Scholar
  34. 34.
    K. Scida, P.W. Stege, G. Haby, G.A. Messina, C.D. García, Anal. Chim. Acta 691, 6–17 (2011)CrossRefGoogle Scholar
  35. 35.
    S. Iijima, Nature 354, 56–58 (1991)CrossRefGoogle Scholar
  36. 36.
    S. Kumar, R. Rani, N. Dilbaghi, K. Tankeshwar, K.H. Kim, Chem. Soc. Rev. 46, 158–196 (2017)CrossRefGoogle Scholar
  37. 37.
    B. Bozal-Palabiyik, B. Uslu, Ionics 22, 2519–2528 (2016)CrossRefGoogle Scholar
  38. 38.
    S. Shahrokhian, P. Hosseini, Z. Kamalzadeh, Electroanalysis 25, 2481–2491 (2013)CrossRefGoogle Scholar
  39. 39.
    M.S. Cosio, A. Pellicanò, B. Brunetti, C.A. Fuenmayor, Sens. Actuators B 246, 673–679 (2017)CrossRefGoogle Scholar
  40. 40.
    Y. Patiño, S. Pilehvar, E. Díaz, S. Ordóñez, K. De Wael, J. Hazard. Mater. 323, 621–631 (2017)CrossRefGoogle Scholar
  41. 41.
    A. Gholizadeh, S. Shahrokhian, A. Iraji zad, S. Mohajerzadeh, M. Vosoughi, S. Darbari, M. Mehran, Anal. Chem. 84, 5932–5938 (2012)CrossRefGoogle Scholar
  42. 42.
    K.B. Holt, D.J. Caruana, E.J. Millán-Barrios, J. Am. Chem. Soc. 131, 11272–11273 (2009)CrossRefGoogle Scholar
  43. 43.
    S. Shahrokhian, S. Ranjbar, M. Ghalkhani, Electroanalysis 28, 469–476 (2016)CrossRefGoogle Scholar
  44. 44.
    S. Shahrokhian, M. Ghalkhani, Electrochim. Acta 55, 3621–3627 (2010)CrossRefGoogle Scholar
  45. 45.
    S. Shahrokhian, M. Khafaji, Electrochim. Acta 55, 9090–9096 (2010)CrossRefGoogle Scholar
  46. 46.
    M. Amiri, S. Shahrokhian, F. Marken, Electroanalysis 19, 1032–1038 (2007)CrossRefGoogle Scholar
  47. 47.
    J. Wang, H. Zhang, M.R. Hunt, A. Charles, J. Tang, O. Bretcanu, L. Šiller, Chem. Sustain. Chem. 10, 363–371 (2017)CrossRefGoogle Scholar
  48. 48.
    J.M.P.J. Garrido, F. Borges, C.M.A. Brett, E.M.P.J. Garrido, Ionics 22, 2511–2518 (2016)CrossRefGoogle Scholar
  49. 49.
    M.K. Singh, R.K. Pandey, R. Prakash, Org. Electron. 50, 359–366 (2017)CrossRefGoogle Scholar
  50. 50.
    D. Joung, A. Chunder, L. Zhai, S.I. Khondaker, Nanotechnology 21, 165202 (2010)CrossRefGoogle Scholar
  51. 51.
    F. Yavari, N. Koratkar, Phys. Chem. Lett. 3, 1746–1753 (2012)CrossRefGoogle Scholar
  52. 52.
    B.C. Janegitz, T.A. Silva, A. Wong, L. Ribovski, F.C. Vicentini, M.D.P.T. Sotomayor, O. Fatibello-Filho, Biosens. Bioelectron. 89, 224–233 (2017)CrossRefGoogle Scholar
  53. 53.
    Q. Wang, A. Vasilescu, Q. Wang, Y. Coffinier, M. Li, R. Boukherroub, S. Szunerits, ACS Appl. Mater. Interfaces 9, 12823–12831 (2017)CrossRefGoogle Scholar
  54. 54.
    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, R.S. Ruoff, Carbon 45, 1558–1565 (2007)CrossRefGoogle Scholar
  55. 55.
    Z. González, C. Botas, C. Blanco, R. Santamaría, M. Granda, P. Álvarez, R. Menéndez, Nano Energy 2, 1322–1328 (2013)CrossRefGoogle Scholar
  56. 56.
    J. Kauppila, P. Kunnas, P. Damlin, A. Viinikanoja, C. Kvarnström, Electrochim. Acta 89, 84–89 (2013)CrossRefGoogle Scholar
  57. 57.
    N. Díez, A. Śliwak, S. Gryglewicz, B. Grzyb, G. Gryglewicz, RSC Adv. 5, 81831–81837 (2015)CrossRefGoogle Scholar
  58. 58.
    L. Yang, D. Liu, J. Huang, T. You, Sens. Actuators B 193, 166–172 (2014)CrossRefGoogle Scholar
  59. 59.
    M.A. Raj, S.A. John, J. Phys. Chem. C 117, 4326–4335 (2013)CrossRefGoogle Scholar
  60. 60.
    D. Zhang, X. Ouyang, J. Ma, L. Li, Y. Zhang, Electroanalysis 28, 749–756 (2016)CrossRefGoogle Scholar
  61. 61.
    S. Shahrokhian, R. Mohammadi, E. Asadian, Int. J. Hydrog. Energy 41, 17496–17505 (2016)CrossRefGoogle Scholar
  62. 62.
    E. Laviron, J. Electroanal. Chem. Interfacial Electrochem. 101, 19–28 (1979)CrossRefGoogle Scholar
  63. 63.
    A.J. Bard, L.R. Faulkner, Electrochemical Methods Fundamentals and Applications, 2nd edn. (Wiley, New York, 2001)Google Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  • Saeed Shahrokhian
    • 1
    • 2
  • Mohammad Hafezi Kahnamoui
    • 1
  • Razieh Salimian
    • 1
  1. 1.Department of ChemistrySharif University of TechnologyTehranIran
  2. 2.Institute for Nanoscience and TechnologySharif University of TechnologyTehranIran

Personalised recommendations