Journal of the Iranian Chemical Society

, Volume 15, Issue 7, pp 1477–1483 | Cite as

Separation and determination of cinchona alkaloids by ligand-exchange capillary electrophoresis using a Cu(II)–l-lysine complex as selector

  • Liying Xu
  • Wenyan Zhao
  • Ruimiao Chang
  • Guangbin Zhang
  • Hongfen Zhang
  • Anjia Chen
Original Paper


The purpose of this study was to develop a novel, simple and precise ligand-exchange capillary electrophoresis method to separate the diastereomer pairs of four major cinchona alkaloids (quinine/quinidine and cinchonine/cinchonidine). The l-lysine and copper(II) were chosen as the ligand and the central ion, respectively. Optimal separation conditions of four alkaloids were 4.0 mM l-lys, 2.0 mM copper(II) and 30 mM NH4Ac at pH 8.9 and a applied voltage of 15 kV . Meanwhile, the first-order derivative electropherogram was used for resolving the overlapping peaks of cinchonidine and quinidine. Under the optimum condition, good linearities were obtained with correlation coefficients from 0.9908 to 0.9935. The limits of detection (LOD, S/N = 3) and the limits of quantitation (LOQ, S/N = 10) ranged from 0.24 to 0.41 μg/mL and from 0.73 to 1.35 μg/mL, respectively. The recoveries ranged between 95.38 and 106.03%. The proposed ligand-exchange capillary electrophoresis method was suitable for the quantitative determination of four cinchona alkaloids in some preparations such as Compound Quinine Injection, Tonic Water and Klorane quinine and Vitamin B complex Shampoo.


Ligand-exchange capillary electrophoresis First-order derivative electropherogram Cinchona alkaloids Simultaneous determination 



Ligand-exchange capillary electrophoresis

















This work was financially sponsored by the Natural Science Foundation of Shanxi Province (Nos. 201701D121141 and 201701D121023) and supported by the Fund for Shanxi Key Subject Construction (FSKSC2016).


  1. 1.
    D.V. McCalley, J. Chromatogr. A 967, 1–19 (2002)CrossRefPubMedGoogle Scholar
  2. 2.
    B.P. Xiang, K.M. Belyk, R.A. Reamer, N. Yasuda, Angew. Chem. 126, 8515–8518 (2014)CrossRefGoogle Scholar
  3. 3.
    Y.L. Liu, X. Wang, X.Y. Wang, W. He, Org. Biomol. Chem. 12, 3163–3166 (2014)CrossRefPubMedGoogle Scholar
  4. 4.
    S. Keunchkarian, C.A. Franca, L.G. Gagliardi, C.B. Castells, J. Chromatogr. A 1298, 103–108 (2013)CrossRefPubMedGoogle Scholar
  5. 5.
    W. Buchberger, D. Gstöttenmayr, M. Himmelsbach, Electrophoresis 31, 1208–1213 (2010)CrossRefPubMedGoogle Scholar
  6. 6.
    R. Gatti, M.G. Gioia, V. Cavrini, Anal. Chim. Acta 512, 85–91 (2004)CrossRefGoogle Scholar
  7. 7.
    D. Tsimachidis, P. Cesla, T. Hájek, G. Theodoridis, P. Jandera, J. Sep. Sci. 31, 1130–1136 (2008)CrossRefPubMedGoogle Scholar
  8. 8.
    C.V. Hoffmann, M. Lämmerhofer, W. Lindner, Anal. Bioanal. Chem. 393, 1257–1265 (2009)CrossRefPubMedGoogle Scholar
  9. 9.
    Y. Zhang, H.X. Yu, Y.J. Wu, W.Y. Zhao, M. Yang, H.W. Jing, A.J. Chen, Anal. Biochem. 462, 13–18 (2014)CrossRefPubMedGoogle Scholar
  10. 10.
    L. Li, L.Y. Xu, M. Chen, G.B. Zhang, H.F. Zhang, A.J. Chen, J. Pharm. Biomed. Anal. 141, 39–45 (2017)CrossRefPubMedGoogle Scholar
  11. 11.
    V.A. Davankov, S.V. Rogozhin, J. Chromatogr. A 60, 280–283 (1971)CrossRefGoogle Scholar
  12. 12.
    J. Koidl, H. Hödl, M.G. Schmid, S. Pantcheva, T. Pajpanova, G. Gübitz, Electrophoresis 26, 3878–3883 (2005)CrossRefPubMedGoogle Scholar
  13. 13.
    Y.J. Liu, X.Y. Wang, Chirality 29, 422–429 (2017)CrossRefPubMedGoogle Scholar
  14. 14.
    Y.J. Wu, Y.Y. Zhai, Y. Zhang, H.F. Zhang, H.W. Jing, A.J. Chen, J. Chromatogr. B 965, 254–259 (2014)CrossRefGoogle Scholar
  15. 15.
    W.Y. Zhao, Y.Q. Li, Y. Zhang, H.F. Zhang, H.X. Yu, A.J. Chen, Anal. Lett. 49, 1176–1183 (2016)CrossRefGoogle Scholar
  16. 16.
    Z.L. Chen, K. Uchiyama, T. Hobo, Anal. Chim. Acta 523, 1–7 (2004)CrossRefGoogle Scholar
  17. 17.
    X.Y. Mu, L. Qi, H.Z. Zhang, Y. Shen, J. Qiao, H.M. Ma, Talanta 97, 349–354 (2012)CrossRefPubMedGoogle Scholar
  18. 18.
    A. Contino, G. Maccarrone, M. Remelli, Anal. Bioanal. Chem. 405, 951–959 (2013)CrossRefPubMedGoogle Scholar
  19. 19.
    X.N. Lu, Y. Chen, L. Guo, Y.F. Yang, J. Chromatogr. A 945, 249–255 (2002)CrossRefPubMedGoogle Scholar
  20. 20.
    Y.Y. Huang, H.X. Yu, L. Li, C.W. Zhang, H.F. Zhang, G.B. Zhang, A.J. Chen, Electrophoresis 37, 3010–3016 (2016)CrossRefPubMedGoogle Scholar
  21. 21.
    M.C. García, L. Ortiz, J.M. Sarabia, Aldama. Anal. Chim. Acta 587, 222–234 (2007)CrossRefPubMedGoogle Scholar
  22. 22.
    J. Pérez-Meseguer, A. Garza-Juárez, R. Salazar-Aranda, M.L. Salazar-Cavazos, Y.C. Torre Rodríguez, V. Rivas-Galindo, N.W. de Torres, J. AOAC Int. 93, 1161–1168 (2010)PubMedGoogle Scholar
  23. 23.
    K. Suzuki, A. Kamimura, S.B. Hooker, Mar. Chem. 176, 96–109 (2015)CrossRefGoogle Scholar
  24. 24.
    R.A. Sversut, I.C. Alcântara, A.M. Rosa, A.C.M. Baroni, P.O. Rodrigues, A.K. Singh, M.S. Amaral, N.M. Kassab, Arab. J. Chem. 10, 604–610 (2017)CrossRefGoogle Scholar
  25. 25.
    X.Y. Mu, L. Qi, J. Qiao, X.Z. Yang, H.M. Ma, Anal. Chim. Acta 846, 68–74 (2014)PubMedGoogle Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  1. 1.College of PharmacyShanxi Medical UniversityTaiyuanChina

Personalised recommendations