Skip to main content
Log in

3D-QSAR modeling of maximum steady-state fluxes of some substituted benzenes and quinolone derivatives through polydimethylsiloxane membrane

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The maximum steady-state flux of 79 compounds (substituted benzenes, and quinolones and their derivatives) with a wide range of polarity through a PDMS membrane was predicted using a comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) methods. Moreover, the contribution of partial atomic charge to mass transport phenomena was further verified by the correlation of atomic charge to apparent permeability through polydimethylsiloxane (PDMS) membranes. The obtained results indicated superiority of CoMSIA model over CoMFA model. The best CoMSIA model is developed based on the combination of electrostatic and hydrophobic and H-bond acceptor fields (CoMSIA-EHA). The contour maps of electrostatic and hydrophobic and H-bond acceptor fields of CoMSIA model provide an interpretable and logical relationship between chemicals structure and their fluxes, which give useful insights for designing new compounds with higher penetration through the membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H.A. Daynes, The process of diffusion through a rubber membrane. Proc. R. Soc. Lond. A97, 286–307 (1920)

    Article  Google Scholar 

  2. J. Crank, S. Park, Gdiffusion in Polymer (Academic Press, NY, 1968), pp. 1–39

    Google Scholar 

  3. C.S. Leopold, H.I. Maibach, J. Inv. Der. 113(3), 304–307 (1999)

    Article  CAS  Google Scholar 

  4. A.D. Woolfson, D.F. Mccafferty, Percutaneous local anesthesia: drug release characteristics of the amethocaine phase–change systems. Int. J. Pharm. 94, 75–80 (1993)

    Article  CAS  Google Scholar 

  5. N.A. Magrab, A.C. Williams, B.W. Barry, Estradiol permeation through human skin and statistic membrane-effects of propylene glycol and super saturation. J. Cont. Rel. 36, 277–294 (1995)

    Article  Google Scholar 

  6. M.D. Barrate, Quantitative structure-activity relationships for permeability. Toxicol. Vitro 9, 27–37 (1995)

    Article  Google Scholar 

  7. J.C. Dearden, Applications of quantitative structure-property relationships to pharmaceutics. Chem. Int. Lab. Syst. 24, 77–87 (1994)

    Article  CAS  Google Scholar 

  8. D.R. Friend, In vitro skin permeation techniques. J. Controll. Rel. 18, 235–248 (1992)

    Article  CAS  Google Scholar 

  9. E.J. Lien, H. Gao, QSAR analysis of skin permeability of various drugs in man as compared to in vivo and in vitro studies. Pharm. Res. 12, 583–587 (1995)

    Article  CAS  Google Scholar 

  10. E.R. Garret, P.B. Chemburkar, J. Pharm. Sci. 57(6), 949–959 (1968)

    Article  Google Scholar 

  11. D.M. Moeckly, L.E. Matheson, The development of a predictive method for the estimation of flux through polydimethylsiloxane membrane: I. Identification of critical variables for a series of substituted benzenes. Int. J. Pharm. 77, 151–162 (1991)

    Article  CAS  Google Scholar 

  12. M.W. Hu, L.E. Matheson, The development of a predictive method for the estimation of flux through polydimethylsiloxane membrane. Ш. Application to a series of substituted pyridines. Pharm. Res. 10, 732–736 (1993)

    Article  CAS  Google Scholar 

  13. L.E. Matheson, M.W. Hu, The development of a predictive method for the estimation of flux through polydimethylsiloxane membrane. Application to a series of substituted quinolones. Pharm. Res. 10, 839–842 (1993)

    Article  CAS  Google Scholar 

  14. C.J. Cramer, G.R. Famini, A.H. Lowrey, use of calculated quantum chemical properties as surrogates for solvatochromic parameters in structure-activity relationship. Acc. Chem. Res. 26, 599–605 (1993)

    Article  CAS  Google Scholar 

  15. Y. Chen, W.L. Yang, L.E. Matheson, Prediction of flux through polydimethylsiloxane membranes using atomic charge calculations. Int. J. Pharm. 94, 81–88 (1993)

    Article  CAS  Google Scholar 

  16. R. Liu, L.E. Matheson, Comparative molecular field analysis combined with physicochemical parameters for prediction of polydimethylsiloxane membrane. Pharm. Res. 11, 257–266 (1994)

    Article  CAS  Google Scholar 

  17. Y. Chen, P. Vayumhasuwan, L.E. Matheson, prediction of flux through polydimethylsiloxane membranes using atomic charge calculations; application to an extended data set. Int. J. Pharm. 137, 149–158 (1996)

    Article  CAS  Google Scholar 

  18. R.D. Cramer, D.E. Patterson, J.D. Bunce, Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc. 110, 5959–5967 (1988)

    Article  CAS  Google Scholar 

  19. G. Klebe, U. Abraham, comparative molecular similarity index analysis (CoMSIA) to study hydrogen-bonding properties and to score combinatorial libraries. J. Comput. Appl. Mol. 13, 1–10 (1999)

    Article  CAS  Google Scholar 

  20. G. Klebe, U. Abraham, T. Mietzner, molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J. Med. Chem. 37, 4130–4146 (1994)

    Article  CAS  Google Scholar 

  21. R. Thaimattam, P. Daga, S.A. Rajjak, R. Banerjee, J. Iqbal, 3D-QSAR CoMFA, CoMSIA studies on substituted ureas as Raf-1 kinase inhibitors and its confirmation with structure-based studies. Biorg. Med. Chem. 12, 6415–6425 (2004)

    Article  CAS  Google Scholar 

  22. B. Wendt, R.D. Cramer, Challenging the gold standard for 3D-QSAR: template CoMFA versus X-ray alignment. J. Comput. Aided Mol. Des. 28, 803–824 (2014)

    Article  CAS  Google Scholar 

  23. C. Xue, S. Cui, M. Liu, Z. Hu, B. Fan, 3D QSAR studies on antimalarial alkoxylated and hydroxylated chalcones by CoMFA and CoMSIA. Eur. J. Med. Chem. 39, 745–753 (2004)

    Article  CAS  Google Scholar 

  24. W. Zhu, G. Chen, L. Hu, X. Luo, C. Gui, C. Luo, C.M. Puah, K. Chen, H. Jiang, QSAR analyses on ginkgolides and their analogues using CoMFA, CoMSIA, and HQSAR. Biorg. Med. Chem. 13, 313–322 (2005)

    Article  CAS  Google Scholar 

  25. G. Schüürmann, R.-U. Ebert, J. Chen, B. Wang, R. Kühne, External validation and prediction employing the predictive squared correlation coefficient, Test set activity mean vs training set activity mean. J. Chem. Inf. Model. 48, 2140–2145 (2008)

    Article  Google Scholar 

  26. B. Chen, Z. Zhu, M. Chen, W. Dong, D. Li, Three-dimensional quantitative structure–activity relationship study on antioxidant capacity of curcumin analogues. J. Mol. Struct. 1061, 134–139 (2014)

    Article  CAS  Google Scholar 

  27. W. Samee, J. Ungwitayatorn, C. Matayatsuk, J. Pimthon, 3D-QSAR studies on phthalimide derivatives as HIV-1 reverse transcriptase inhibitors. Sci. Asia 30, 81–88 (2010)

    Article  Google Scholar 

  28. A. Golbraikh, A. Tropsha, Beware of Q2. J. Mol. Graph. Model. 20, 269–276 (2002)

    Article  CAS  Google Scholar 

  29. A. Tropsha, Best practices for QSAR model development, validation, and exploitation. Mol. Inform. 29, 476–488 (2010)

    Article  CAS  Google Scholar 

  30. P.P. Roy, K. Roy, On some aspects of variable selection for partial least squares regression models. QSAR Comb. Sci. 27, 302–313 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Fatemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behgozin, S.M., Fatemi, M.H. 3D-QSAR modeling of maximum steady-state fluxes of some substituted benzenes and quinolone derivatives through polydimethylsiloxane membrane. J IRAN CHEM SOC 15, 1293–1300 (2018). https://doi.org/10.1007/s13738-018-1328-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-018-1328-9

Keywords

Navigation