Skip to main content
Log in

The plutonium chemistry of Pu + O2 system: the theoretical investigation of the plutonium–oxygen interaction

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The minimum energy pathway of the reaction Pu + O2 → PuO + O has been computed with density functional theory using different functionals. The detailed description of the reaction mechanisms offers a deep insight into the reaction. The results indicate that the title reaction is exothermic. The nature of the Pu–O mode bonding evolution along the pathways was studied using electron localization function. The variation of density of state along the pathway was performed for analyzing the role of 5f electrons/orbitals in the title reaction. The analyses of results show that the 5f orbitals of plutonium atom make great contributions to HOMO orbitals. Additionally, based on the optimized geometries, Infrared spectra and Raman spectra are obtained and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R.M. Cox, P.B. Armentrout, W.A. de Jong, J. Phys. Chem. B. 120, 1601 (2016). https://doi.org/10.1021/acs.jpcb.5b08008

    Article  CAS  PubMed  Google Scholar 

  2. K. Gibson, R.G. Haire, J. Marcalo, M. Santos, A.P. de Matos, M.K. Mrozik, R.M. Pitzer, B.E. Bursten, Organometallics. 26, 3947 (2007). https://doi.org/10.1021/om700329h

    Article  CAS  Google Scholar 

  3. J. Zhou, H.B. Schlegel, J. Phys. Chem. A 114, 8613 (2010). https://doi.org/10.1021/jp912098

    Article  CAS  PubMed  Google Scholar 

  4. J. Marcalo, J.K. Gibson, J. Phys. Chem. A 113, 12599 (2009). https://doi.org/10.1021/jp904862a

    Article  CAS  PubMed  Google Scholar 

  5. K.J. de Almeida, H.A. Duarte, Organometallics. 28, 3203 (2009). https://doi.org/10.1021/om801136n

    Article  CAS  Google Scholar 

  6. C.C.L. Pereira, C.J. Marsden, J. Marcalo, J.K. Gibson, Phys. Chem. Chem. Phys. 13, 12940 (2011). https://doi.org/10.1039/C1CP20996E

    Article  CAS  PubMed  Google Scholar 

  7. MdC. Michelini, N. Russo, E. Sicilia, J. Am. Chem. Soc. 129, 4229 (2007). https://doi.org/10.1021/ja065683i

    Article  CAS  Google Scholar 

  8. M.C. Heaven, B.J. Barker, I.O. Antonov, J. Phys. Chem. A 118, 10867 (2014). https://doi.org/10.1021/jp507283n

    Article  CAS  PubMed  Google Scholar 

  9. R.M. Cox, P.B. Armentrout, W.A. de Jong, Inorg. Chem. 54, 3584 (2015). https://doi.org/10.1021/acs.inorgchem.5b00137

    Article  CAS  PubMed  Google Scholar 

  10. B. Liang, L. Andrews, J. Li, B.E. Bursten, J. Am. Chem. Soc. 124, 6723 (2002). https://doi.org/10.1021/ja012593z

    Article  CAS  PubMed  Google Scholar 

  11. M. Santos, J. Marcalo, J.P. Leal, A.P. de Matos, J.K. Gibson, R.G. Haire, Int. J. Mass Spectrom. 228, 457 (2003). https://doi.org/10.1016/S1387-3806(03)00138-6

    Article  CAS  Google Scholar 

  12. J.K. Gibson, R.G. Haire, M. Santos, J. Marc alo, A.Pires de Matos, J. Phys. Chem. A 109, 2768 (2005). https://doi.org/10.1021/jp0447340

    Article  CAS  PubMed  Google Scholar 

  13. V. Goncharov, M.C. Heaven, J. Chem. Phys. 124, 064312 (2006). https://doi.org/10.1063/1.2167356

    Article  CAS  Google Scholar 

  14. M.C. Heaven, Phys. Chem. Chem. Phys. 8, 4497 (2006). https://doi.org/10.1039/B607486C

    Article  CAS  PubMed  Google Scholar 

  15. M. Santos, J. Marcalo, A.P. de Matos, J.K. Gibson, R.G. Haire, J. Phys. Chem. A 106, 7190 (2002). https://doi.org/10.1021/jp025733f

    Article  CAS  Google Scholar 

  16. M.C. Michelini, N. Russo, E. Sicilia, J. Am. Chem. Soc. 129, 4229 (2007). https://doi.org/10.1021/ja065683i

    Article  CAS  Google Scholar 

  17. W. Niu, H. Zhang, P. Li, T. Gao, Int. J. Quantum Chem. 115, 6 (2015). https://doi.org/10.1002/qua.24753

    Article  CAS  Google Scholar 

  18. G. Mazzone, M.C. Michelini, N. Russo, E. Sicilia, Inorg. Chem. 6, 2083 (2008). https://doi.org/10.1021/ic701789n

    Article  CAS  Google Scholar 

  19. M.C. Michelini, N. Russo, E. Sicilia, Angew. Chem.Int. Ed. 45, 1095 (2006). https://doi.org/10.1002/anie.200501931

    Article  CAS  Google Scholar 

  20. J.M. Haschke, T.H. Allen, J.L. Stakebake, J. Alloys Compd. 243, 23 (1996). https://doi.org/10.1016/S0925-8388(96)02328-6

    Article  CAS  Google Scholar 

  21. J.K. Gibson, R.G. Haire, M. Santos, J. Marçalo, A. Pires de Matos, J. Phys. Chem. A 109, 2768 (2005). https://doi.org/10.1021/jp0447340

    Article  CAS  PubMed  Google Scholar 

  22. H.L. Yu, G. Li, H.B. Li, R.Z. Qiu, H. Huang, D.Q. Meng, J. Alloys Compd. 654, 567 (2016). https://doi.org/10.1016/j.jallcom.2015.09.097

    Article  CAS  Google Scholar 

  23. H.L. Yu, T. Tang, S.T. Zheng, Y. Shi, R.Z. Qiu, W.H. Luo, D.Q. Meng, J. Alloys Compd. 666, 287 (2016). https://doi.org/10.1016/j.jallcom.2016.01.095

    Article  CAS  Google Scholar 

  24. P. Li, W.X. Niu, T. Gao, H.Y. Wang, ChemPhysChem. 15, 3078 (2014). https://doi.org/10.1002/cphc.201402327

    Article  CAS  PubMed  Google Scholar 

  25. Gaussian 09 (Revision A.02), M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, C. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian, Inc., Wallingford (2009)

  26. A.D. Becke, J. Chem. Phys. 98, 1372 (1993). https://doi.org/10.1063/1.464304

    Article  CAS  Google Scholar 

  27. A.D. Becke, J. Chem. Phys. 98, 5648 (1993). https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  28. C. Lee, W. Yang, R.G. Parr, Phys. Rev. 37, 785 (1988). https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  29. R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, J. Chem. Phys. 72, 650 (1980). https://doi.org/10.1063/1.438955

    Article  CAS  Google Scholar 

  30. J.P. Blaudeau, M.P. McGrath, L.A. Curtiss, L. Radom, J. Chem. Phys. 107, 5016 (1997). https://doi.org/10.1063/1.474865

    Article  CAS  Google Scholar 

  31. T. Clark, J. Chandrasekhar, PvR. Schleyer, J. Chem. Phys. 74, 294 (1983). https://doi.org/10.1002/jcc.540040303

    Article  Google Scholar 

  32. W. Kuchle, M. Dolg, H. Stoll, H. Preuss, J. Chem. Phys. 100, 7535 (1994). https://doi.org/10.1063/1.466847

    Article  Google Scholar 

  33. P. Yang, I. Warnke, R.L. Martin, P.J. Hay, Organometallics. 27, 1384 (2008). https://doi.org/10.1021/om700927n

    Article  CAS  Google Scholar 

  34. X. Cao, M. Dolg, Coord. Chem. Rev. 250, 900 (2006). https://doi.org/10.1016/j.ccr.2006.01.003

    Article  CAS  Google Scholar 

  35. M.C. Michelini, N. Russoand, E. Sicilia, J. Am. Chem. Soc. 129, 4229 (2007). https://doi.org/10.1021/ja065683i

    Article  CAS  Google Scholar 

  36. G. Mazzone, M.C. Michelini, N. Russon, E. Sicilia, Inorg. Chem. 47, 2083 (2008). https://doi.org/10.1021/ic701789n

    Article  CAS  PubMed  Google Scholar 

  37. J.T. Lyon, L. Andrws, eP.-A. Malmqvist, B.O. Roos, T. Yang, B.E. Bursten, Inorg. Chem. 46, 4917 (2007). https://doi.org/10.1021/ic062407w

    Article  CAS  PubMed  Google Scholar 

  38. K. Fukui, J. Phys. Chem. 74, 4161 (1970)

    Article  CAS  Google Scholar 

  39. L. Gagliardi, B.O. Roos, P.A. Malmqvis, J.M. Dyke, J. Phys. Chem. A 105, 10602 (2001). https://doi.org/10.1021/jp012888z

    Article  CAS  Google Scholar 

  40. T. Lu, F. Chen, J. Comput. Chem. 33, 580 (2012). https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  41. A.D. Becke, K.E. Edgecombe, J. Chem. Phys. 92, 5397 (1990). https://doi.org/10.1063/1.458517

    Article  CAS  Google Scholar 

  42. A. Savin, R. Nesper, S. Wengert, T.R. Fassler, Angew. Chem. Int. Ed. Engl. 36, 1808 (1997). https://doi.org/10.1002/anie.199718081

    Article  CAS  Google Scholar 

  43. J.G. Małecki, Polyhedron. 29, 1973 (2010). https://doi.org/10.1016/j.poly.2010.03.015

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks a lot to Dr. Sobereva for the useful discussions. We are also very thankful to the Center of High Performance Computing in the Physics of Sichuan University providing computer time. Project supported by the National Natural Science Foundation of China (Grant No. 11364023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenlang Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, W., Wang, Q., Wang, X. et al. The plutonium chemistry of Pu + O2 system: the theoretical investigation of the plutonium–oxygen interaction. J IRAN CHEM SOC 16, 1157–1162 (2019). https://doi.org/10.1007/s13738-018-01587-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-018-01587-x

Keywords

Navigation