Skip to main content

Gas transport membranes based on novel optically active polyester/cellulose/ZnO bionanocomposite membranes

Abstract

In this paper, at first commercially available ZnO nanoparticles were modified with biodegradable nanocellulose through ultrasonic irradiation technique. Then, optically active bionanocomposite (BNCs) membranes composed of polyester (PE) and cellulose/ZnO BNCs are synthesized, as a novel process to enhance gas separation performance. The obtained PE/BNCs were characterized by Fourier transform-infrared spectroscopy, thermogravimetry analysis (TGA), X-ray powder diffraction, field emission-scanning electron microscopy, and transmission electron microscopy (TEM). TGA data indicated an increase thermal stability of the PE/BNCs in compared to the pure polymer. From TEM image of PE/BNCs, it can be found that the surface-modified ZnO with diametric size of less than 40 nm, uniformly dispersed in the obtained PE matrix. The results obtained from gas permeation experiments with a constant pressure setup showed that adding cellulose/ZnO to the polyester membrane structure increased the permeability of the membranes. From biodegradation test observed that the degradation occurred in a faster rate in the presence of cellulose/ZnO in the PE matrix.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Y. Yampolskii, Macromolecules 45, 3298–3311 (2012)

    Article  CAS  Google Scholar 

  2. P.M. Budd, N.B. McKeown, Polym. Chem. 1, 63–68 (2010)

    Article  CAS  Google Scholar 

  3. N.B. McKeown, ISRN Mater. Sci. 2012, 513986 (2012)

    Article  Google Scholar 

  4. N.B. McKeown, P.M. Budd, Macromolecules 43, 5163–5176 (2010)

    Article  CAS  Google Scholar 

  5. P.M. Budd, B.S. Ghanem, S. Makhseed, N.B. McKeown, K.J. Msayib, C.E. Tattershall, Chem. Commun. (2), 230–231 (2004)

  6. E. Ameri, M. Sadeghi, N. Zarei, A. Pournaghshband, J. Membr. Sci. 479, 11–19 (2015)

    Article  CAS  Google Scholar 

  7. Q. Wu, X. Chen, P. Zhang, Y. Han, X. Chen, Y. Yan, S. Li, Cryst. Growth Des. 8, 3010–3018 (2008)

    Article  CAS  Google Scholar 

  8. R. Rhodes, M. Horie, H. Chen, Z. Wang, M.L. Turner, B.R. Saunders, J. Colloid Interface Sci. 344, 261–271 (2010)

    Article  CAS  Google Scholar 

  9. S.K. Gupta, A. Joshi, M. Kaur, J. Chem. Sci. 122, 57–62 (2010)

    Article  CAS  Google Scholar 

  10. C.D. Corso, A. Dickherber, W.D. Hunt, Biosens. Bioelectron. 24, 805–811 (2008)

    Article  CAS  Google Scholar 

  11. Z.L. Wang, Appl. Phys. A Mater. Sci. Process. 88, 7–15 (2007)

    Article  CAS  Google Scholar 

  12. F. Chivrac, E. Pollet, L. Avérous, Mater. Sci. Eng. R Rep. 67, 1–17 (2009)

    Article  Google Scholar 

  13. P. Kumar, K.P. Sandeep, S. Alavi, V.D. Truong, R.E. Gorga, J. Food Eng. 100, 480–489 (2010)

    Article  CAS  Google Scholar 

  14. C. Guan, C.-L. Lü, Y.-F. Liu, B. Yang, J. Appl. Polym. Sci. 102, 1631–1636 (2006)

    Article  CAS  Google Scholar 

  15. P. Tingaut, T. Zimmermann, F. Lopez-Suevos, Biomacromolecules 11, 455–464 (2010)

    Article  Google Scholar 

  16. D. Ratna, S. Divekar, A.B. Samui, B.C. Chakraborty, A.K. Banthia, Polymer 47, 4068–4074 (2006)

    Article  CAS  Google Scholar 

  17. S. Siengchin, J. Karger-Kocsis, A.A. Apostolov, R. Thomann, J. Appl. Polym. Sci. 106, 248–254 (2007)

    Article  CAS  Google Scholar 

  18. Q. Wang, H. Xia, C. Zhang, J. Appl. Polym. Sci. 80, 1478–1488 (2001)

    Article  CAS  Google Scholar 

  19. Y.Q. Li, S.Y. Fu, Y.W. Mai, Polymer 47, 2127–2132 (2006)

    Article  CAS  Google Scholar 

  20. J.P. Sheth, A. Aneja, G.L. Wilkes, E. Yilgor, G.E. Atilla, I. Yilgor, F.L. Beyer, Polymer 45, 6919 (2004)

    Article  CAS  Google Scholar 

  21. J.M. Yang, H.T. Lin, W.C. Lai, J. Membr. Sci. 208, 105 (2002)

    Article  CAS  Google Scholar 

  22. H. Cong, M. Radosz, B.F. Towler, Y. Shen, Sep. Purif. Technol. 55, 281 (2007)

    Article  CAS  Google Scholar 

  23. F. Peng, L. Lu, H. Sun, Y. Wang, H. Wu, Z. Jiang, J. Membr. Sci. 275, 97 (2006)

    Article  CAS  Google Scholar 

  24. G. Maier, Gas separation with polymer membranes. Angew. Chem. Int. Ed. 37, 2960 (1998)

    Article  Google Scholar 

  25. P. Hou, S. Kawashima, D. Kong, J. Corr, J. Qian, S.P. Shah, Compos. B Eng. 45, 440–448 (2012)

    Article  Google Scholar 

  26. T. Mousavand, S. Ohara, M. Umetsu, J. Zhang, S. Takami, T. Naka, T. Adschiri, Fluids 40, 397–401 (2007)

    CAS  Google Scholar 

  27. S.K. Haram, B.M. Quinn, A.J. Bard, J. Am. Chem. Soc. 123, 8860–8861 (2001)

    Article  CAS  Google Scholar 

  28. S. Mallakpour, F. Marefatpour, Met. Org. Chem. 45, 376–380 (2015)

    CAS  Google Scholar 

  29. F. Yang, J. Zhao, Y. Li, S. Zhang, Y. Shao, H. Shao, T. Ma, C. Gong, Eur. Polym. J. 45, 2053–2059 (2009)

    Article  CAS  Google Scholar 

  30. C. Wang, W. Chen, Y. Chen, X. Zhao, J. Li, Q. Ren, Mater. Chem. Phys. 143, 773–778 (2014)

    Article  CAS  Google Scholar 

  31. M.G. Dhara, S. Banerjee, Prog. Polym. Sci. 35, 1022–1077 (2010)

    Article  CAS  Google Scholar 

  32. M. Dinari, H. Ahmadizadegan, P. Asadi, New J. Chem. 39, 4478–4487 (2015)

    Article  CAS  Google Scholar 

  33. H. Ahmadizadegan, J. Colloid Interface Sci. 491, 390–400 (2017)

    Article  CAS  Google Scholar 

  34. H. Ahmadizadegan, R. Khajavian, J. Iran. Chem. Soc. 14, 777–789 (2017)

    Article  CAS  Google Scholar 

  35. M.D. Guiver, G.P. Robertson, Y. Dai, F. Bilodeau, Y.S. Kang, K.J. Lee, J.Y. Jho, J. Won, J. Polym. Sci. Part A Polym. Chem. 40, 4193–4204 (2002)

    Article  CAS  Google Scholar 

  36. A. Tabe Mohammadi, T. Matsuura, S. Sourirajan, J. Membr. Sci. 98, 281 (1995)

    Article  CAS  Google Scholar 

  37. H. Nabeshi, T. Yoshikawa, K. Matsuyama et al., Biomaterials 32, 2713 (2011)

    Article  CAS  Google Scholar 

  38. N. Agata, M. Mori, M. Ohta, S. Suwan, I. Ohtani, M. Isobe, FEMS Microbiol. Lett. 121, 31 (1994)

    CAS  Google Scholar 

Download references

Funding

Funding was provided by Darab branch, Islamic Azad University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hashem Ahmadizadegan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahmadizadegan, H., Esmaielzadeh, S. Gas transport membranes based on novel optically active polyester/cellulose/ZnO bionanocomposite membranes. J IRAN CHEM SOC 15, 799–811 (2018). https://doi.org/10.1007/s13738-017-1279-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-017-1279-6

Keywords

  • ZnO nanoparticles
  • Optically active
  • Cellulose
  • Biodegradable
  • Polyester
  • Gas permeation