Abstract
In this paper, at first commercially available ZnO nanoparticles were modified with biodegradable nanocellulose through ultrasonic irradiation technique. Then, optically active bionanocomposite (BNCs) membranes composed of polyester (PE) and cellulose/ZnO BNCs are synthesized, as a novel process to enhance gas separation performance. The obtained PE/BNCs were characterized by Fourier transform-infrared spectroscopy, thermogravimetry analysis (TGA), X-ray powder diffraction, field emission-scanning electron microscopy, and transmission electron microscopy (TEM). TGA data indicated an increase thermal stability of the PE/BNCs in compared to the pure polymer. From TEM image of PE/BNCs, it can be found that the surface-modified ZnO with diametric size of less than 40 nm, uniformly dispersed in the obtained PE matrix. The results obtained from gas permeation experiments with a constant pressure setup showed that adding cellulose/ZnO to the polyester membrane structure increased the permeability of the membranes. From biodegradation test observed that the degradation occurred in a faster rate in the presence of cellulose/ZnO in the PE matrix.
Graphical Abstract

This is a preview of subscription content, access via your institution.














References
Y. Yampolskii, Macromolecules 45, 3298–3311 (2012)
P.M. Budd, N.B. McKeown, Polym. Chem. 1, 63–68 (2010)
N.B. McKeown, ISRN Mater. Sci. 2012, 513986 (2012)
N.B. McKeown, P.M. Budd, Macromolecules 43, 5163–5176 (2010)
P.M. Budd, B.S. Ghanem, S. Makhseed, N.B. McKeown, K.J. Msayib, C.E. Tattershall, Chem. Commun. (2), 230–231 (2004)
E. Ameri, M. Sadeghi, N. Zarei, A. Pournaghshband, J. Membr. Sci. 479, 11–19 (2015)
Q. Wu, X. Chen, P. Zhang, Y. Han, X. Chen, Y. Yan, S. Li, Cryst. Growth Des. 8, 3010–3018 (2008)
R. Rhodes, M. Horie, H. Chen, Z. Wang, M.L. Turner, B.R. Saunders, J. Colloid Interface Sci. 344, 261–271 (2010)
S.K. Gupta, A. Joshi, M. Kaur, J. Chem. Sci. 122, 57–62 (2010)
C.D. Corso, A. Dickherber, W.D. Hunt, Biosens. Bioelectron. 24, 805–811 (2008)
Z.L. Wang, Appl. Phys. A Mater. Sci. Process. 88, 7–15 (2007)
F. Chivrac, E. Pollet, L. Avérous, Mater. Sci. Eng. R Rep. 67, 1–17 (2009)
P. Kumar, K.P. Sandeep, S. Alavi, V.D. Truong, R.E. Gorga, J. Food Eng. 100, 480–489 (2010)
C. Guan, C.-L. Lü, Y.-F. Liu, B. Yang, J. Appl. Polym. Sci. 102, 1631–1636 (2006)
P. Tingaut, T. Zimmermann, F. Lopez-Suevos, Biomacromolecules 11, 455–464 (2010)
D. Ratna, S. Divekar, A.B. Samui, B.C. Chakraborty, A.K. Banthia, Polymer 47, 4068–4074 (2006)
S. Siengchin, J. Karger-Kocsis, A.A. Apostolov, R. Thomann, J. Appl. Polym. Sci. 106, 248–254 (2007)
Q. Wang, H. Xia, C. Zhang, J. Appl. Polym. Sci. 80, 1478–1488 (2001)
Y.Q. Li, S.Y. Fu, Y.W. Mai, Polymer 47, 2127–2132 (2006)
J.P. Sheth, A. Aneja, G.L. Wilkes, E. Yilgor, G.E. Atilla, I. Yilgor, F.L. Beyer, Polymer 45, 6919 (2004)
J.M. Yang, H.T. Lin, W.C. Lai, J. Membr. Sci. 208, 105 (2002)
H. Cong, M. Radosz, B.F. Towler, Y. Shen, Sep. Purif. Technol. 55, 281 (2007)
F. Peng, L. Lu, H. Sun, Y. Wang, H. Wu, Z. Jiang, J. Membr. Sci. 275, 97 (2006)
G. Maier, Gas separation with polymer membranes. Angew. Chem. Int. Ed. 37, 2960 (1998)
P. Hou, S. Kawashima, D. Kong, J. Corr, J. Qian, S.P. Shah, Compos. B Eng. 45, 440–448 (2012)
T. Mousavand, S. Ohara, M. Umetsu, J. Zhang, S. Takami, T. Naka, T. Adschiri, Fluids 40, 397–401 (2007)
S.K. Haram, B.M. Quinn, A.J. Bard, J. Am. Chem. Soc. 123, 8860–8861 (2001)
S. Mallakpour, F. Marefatpour, Met. Org. Chem. 45, 376–380 (2015)
F. Yang, J. Zhao, Y. Li, S. Zhang, Y. Shao, H. Shao, T. Ma, C. Gong, Eur. Polym. J. 45, 2053–2059 (2009)
C. Wang, W. Chen, Y. Chen, X. Zhao, J. Li, Q. Ren, Mater. Chem. Phys. 143, 773–778 (2014)
M.G. Dhara, S. Banerjee, Prog. Polym. Sci. 35, 1022–1077 (2010)
M. Dinari, H. Ahmadizadegan, P. Asadi, New J. Chem. 39, 4478–4487 (2015)
H. Ahmadizadegan, J. Colloid Interface Sci. 491, 390–400 (2017)
H. Ahmadizadegan, R. Khajavian, J. Iran. Chem. Soc. 14, 777–789 (2017)
M.D. Guiver, G.P. Robertson, Y. Dai, F. Bilodeau, Y.S. Kang, K.J. Lee, J.Y. Jho, J. Won, J. Polym. Sci. Part A Polym. Chem. 40, 4193–4204 (2002)
A. Tabe Mohammadi, T. Matsuura, S. Sourirajan, J. Membr. Sci. 98, 281 (1995)
H. Nabeshi, T. Yoshikawa, K. Matsuyama et al., Biomaterials 32, 2713 (2011)
N. Agata, M. Mori, M. Ohta, S. Suwan, I. Ohtani, M. Isobe, FEMS Microbiol. Lett. 121, 31 (1994)
Funding
Funding was provided by Darab branch, Islamic Azad University.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ahmadizadegan, H., Esmaielzadeh, S. Gas transport membranes based on novel optically active polyester/cellulose/ZnO bionanocomposite membranes. J IRAN CHEM SOC 15, 799–811 (2018). https://doi.org/10.1007/s13738-017-1279-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13738-017-1279-6
Keywords
- ZnO nanoparticles
- Optically active
- Cellulose
- Biodegradable
- Polyester
- Gas permeation