Skip to main content

Advertisement

Log in

Simultaneous kinetic–spectrophotometric determination of mycophenolate mofetil and mycophenolic acid based on complexation with Fe(III) using chemometric techniques

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Determination of pharmaceutical analytes has been subjected to many investigations, especially in transplantations in which accurate and precise detection of drugs is of importance. In this study, a simple and fast complexation reaction has been employed for simultaneous kinetic–spectrophotometric determination of two immunosuppressant drugs, mycophenolate mofetil and its active metabolite mycophenolic acid, which is based on the reaction between drugs and Fe(III) ions in the presence of sodium dodecyl sulfate as anionic surfactant by standard addition method. The effect of influential parameters including type of surfactant, concentration of Fe(III) ions and pH of the solution on the complexation reaction has been studied, and SDS was chosen as suitable surfactant, while reaction proceeds with 0.1 M Fe(III) at pH 4. Multivariate curve resolution-alternating least squares has been employed for analyzing the multiset data obtained from augmentation of resulting standard addition matrices. Values for limit of detection of method have been calculated as 4.88 and 1.62 µg mL−1 for mycophenolic acid and mycophenolate mofetil, respectively, and Beer’s law is obeyed over the concentration ranges 10–200 µg mL−1 for MPM and 50–250 µg mL−1 for MPA. The proposed method was successfully applied for determination of drugs in plasma serum samples. The accuracy and reliability of the method was further ascertained by recovery studies via standard addition procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R.M.D. Byrro, G.O. Fulgêncio, P.R. Chellini, A.S.C. Júnior, G.A. Pianetti, J. Pharmaceut. Biomed. 84, 30 (2013). https://doi.org/10.1016/j.jpba.2013.05.030

    Article  Google Scholar 

  2. M. Shipkova, P.D. Niedmann, V.W. Armstrong, E. Schütz, E. Wieland, L.M. Shaw, M. Oellerich, Clin. Chem. 44, 1481 (1998)

    CAS  Google Scholar 

  3. J. Kuhn, C. Götting, K. Kleesiek, Talanta 80, 1894 (2010). https://doi.org/10.1016/j.talanta.2009.10.040

    Article  CAS  Google Scholar 

  4. Z.I. Md Dom, B.D. Noll, J.K. Coller, A.A. Somogyi, G.R. Russ, D.A. Hesselink, T. van Gelder, B.C. Sallustio, J. Chromatorg. B 945, 171 (2014). https://doi.org/10.1016/j.jchromb.2013.11.056

    Article  Google Scholar 

  5. H. Benech, S. Hascoët, V. Furlan, A. Pruvost, A. Durrbach, J. Chromatogr. B 853, 168 (2007). https://doi.org/10.1016/j.jchromb.2007.03.008

    Article  CAS  Google Scholar 

  6. S.R. Vélez, A. Morassi, M.H. Court, J.E. Slovak, N.F. Villarino, J. Pharmaceut. Biomed. 131, 94 (2016). https://doi.org/10.1016/j.jpba.2016.08.012

    Article  Google Scholar 

  7. E. Schütz, M. Shipkova, V.W. Armstrong, E. Wieland, M. Oellerich, Clin. Chem. 45, 419 (1999)

    Google Scholar 

  8. A. Aresta, F. Palmisano, C.G. Zambonin, P. Schena, G. Grandaliano, J. Chromatogr. B 810, 197 (2004). https://doi.org/10.1016/j.jchromb.2004.07.032

    Article  CAS  Google Scholar 

  9. L. Živanović, A. Protić, M. Zečević, B. Jocić, M. Kostić, J. Pharmaceut. Biomed. 50, 640 (2009). https://doi.org/10.1016/j.jpba.2008.09.052

    Article  Google Scholar 

  10. L. Živanović, A. Ličanski, M. Zečević, B. Jocić, M. Kostić, J. Pharmaceut. Biomed. 47, 575 (2008). https://doi.org/10.1016/j.jpba.2008.01.046

    Article  Google Scholar 

  11. M. Bolon, L. Jeanpierre, M. El Barkil, K. Chelbi, M. Sauviat, R. Boulieu, J. Pharmaceut. Biomed. 36, 649 (2004). https://doi.org/10.1016/j.jpba.2004.07.034

    Article  CAS  Google Scholar 

  12. R. DiFrancesco, V. Frerichs, J. Donnelly, C. Hagler, J. Hochreiter, K.M. Tornatore, J. Chromatogr. B 859, 42 (2007). https://doi.org/10.1016/j.jchromb.2007.09.003

    Article  CAS  Google Scholar 

  13. F.A. Elbarbry, A.S. Shoker, J. Chromatogr. B 859, 276 (2007). https://doi.org/10.1016/j.jchromb.2007.09.036

    Article  CAS  Google Scholar 

  14. H. Hosotsubo, S. Takahara, Y. Kokado, S. Permpongkosol, J. Wang, T. Tanaka, K. Matsumiya, M. Kitamura, A. Okuyama, H. Sugimoto, J. Pharmaceut. Biomed. 24, 555 (2001). https://doi.org/10.1016/S0731-7085(00)00442-8

    Article  CAS  Google Scholar 

  15. J.J.Z. Huang, H. Kiang, T.L. Tarnowski, J. Chromatogr. B 698, 293 (1997). https://doi.org/10.1016/S0378-4347(97)00276-4

    Article  CAS  Google Scholar 

  16. D. Indjova, L. Kassabova, D. Svinarov, J. Chromatogr. B 817, 327 (2005). https://doi.org/10.1016/j.jchromb.2004.11.020

    Article  CAS  Google Scholar 

  17. Y. Mino, T. Naito, T. Matsushita, Y. Kagawa, J. Kawakami, J. Pharmaceut. Biomed. 46, 603 (2008). https://doi.org/10.1016/j.jpba.2007.11.018

    Article  CAS  Google Scholar 

  18. M.E.F. Mohamed, S.S. Harvey, R.F. Frye, J. Chromatogr. B 870, 251 (2008). https://doi.org/10.1016/j.jchromb.2008.06.020

    Article  CAS  Google Scholar 

  19. K. Ohyama, N. Kishikawa, H. Nakagawa, N. Kuroda, M. Nishikido, M. Teshima, H. To, T. Kitahara, H. Sasaki, J. Pharmaceut. Biomed. 47, 201 (2008). https://doi.org/10.1016/j.jpba.2007.12.028

    Article  CAS  Google Scholar 

  20. T. Madrakian, M. Soleimani, A. Afkhami, Mater. Sci. Eng., C 42, 38 (2014). https://doi.org/10.1016/j.msec.2014.05.012

    Article  CAS  Google Scholar 

  21. S.N. Prashanth, K.C. Ramesh, J. Seetharamappa, Int. J. Electrochem. Sci. (2011). https://doi.org/10.4061/2011/193041

    Google Scholar 

  22. K.B. Vinay, H.D. Revanasiddappa, M.S. Raghu, S.A.M. Abdulrahman, N. Rajendraprasad, J. Anal. Methods. Chem. (2012). https://doi.org/10.1155/2012/875942

    Google Scholar 

  23. C.E. Jones, P.J. Taylor, A.G. McEvan, G.R. Hanson, J. Am. Chem. Soc. 128, 9378 (2006). https://doi.org/10.1021/ja057651l

    Article  CAS  Google Scholar 

  24. S. Verma, H. Gupta, O. Alam, P. Mullick, N. Siddiqui, S.A. Khan, J. Appl. Spectrosc. 76, 876 (2009). https://doi.org/10.1007/s10812-010-9272-1

    Article  CAS  Google Scholar 

  25. T. Madrakian, M. Madadi-Shad, M. Soleimani, Anal. Bioanal. Chem. Res. 2, 42 (2015)

    CAS  Google Scholar 

  26. I.A. Darwish, Anal. Chim. Acta 551, 222 (2005). https://doi.org/10.1016/j.aca.2005.07.027

    Article  CAS  Google Scholar 

  27. J.A.V. Prior, J.L.M. Santos, J.L.F.C. Lima, Anal. Chim. Acta 600, 183 (2007). https://doi.org/10.1016/j.aca.2007.01.080

    Article  CAS  Google Scholar 

  28. H.E. Abdellatef, J. Pharmaceut. Biomed. 29, 835 (2002). https://doi.org/10.1016/S0731-7085(02)00206-6

    Article  CAS  Google Scholar 

  29. Y. Ni, Y. Wang, S. Kokot, Talanta 78, 432 (2009). https://doi.org/10.1016/j.talanta.2008.11.035

    Article  CAS  Google Scholar 

  30. M. Chamsaz, A. Safavi, J. Fadaee, Anal. Chim. Acta 603, 140 (2007). https://doi.org/10.1016/j.aca.2007.09.006

    Article  CAS  Google Scholar 

  31. M. Bahram, R. Bro, Anal. Chim. Acta 584, 397 (2007). https://doi.org/10.1016/j.aca.2006.11.070

    Article  CAS  Google Scholar 

  32. J. Jaumot, R. Gargallo, A. De Juan, R. Tauler, Chemometr. Intell. Lab. 76, 101 (2005)

    Article  CAS  Google Scholar 

  33. J. Jaumot, A. De Juan, R. Tauler, Chemometr. Intell. Lab. 140, 1 (2015)

    Article  CAS  Google Scholar 

  34. R. Tauler, Chemometr. Intell. Lab. 30, 133 (1995)

    Article  CAS  Google Scholar 

  35. M. Garrido, F.X. Rius, M.S. Larrechi, Anal. Bioanal. Chem. 390, 2059 (2008)

    Article  CAS  Google Scholar 

  36. T. Incecayir, Pharmazie 70, 784 (2015). https://doi.org/10.1691/ph.2015.5081

    CAS  Google Scholar 

  37. C.A. Bunton, Cat. Rev. Sci. Eng. 20, 1 (1979). https://doi.org/10.1080/03602457908065104

    Article  CAS  Google Scholar 

  38. B. Samiey, C.H. Cheng, J. Wu, J. Chem. (2014). https://doi.org/10.1155/2014/908476

    Google Scholar 

  39. W. Windig, J. Guilment, Anal. Chem. 63, 1425 (1991). https://doi.org/10.1021/ac00014a016

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Bahram.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahram, M., Mojarrad, S. & Moghtader, M. Simultaneous kinetic–spectrophotometric determination of mycophenolate mofetil and mycophenolic acid based on complexation with Fe(III) using chemometric techniques. J IRAN CHEM SOC 15, 779–786 (2018). https://doi.org/10.1007/s13738-017-1276-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-017-1276-9

Keywords

Navigation