Advertisement

Journal of the Iranian Chemical Society

, Volume 14, Issue 12, pp 2637–2648 | Cite as

Micelles of polylactide–poly(ethylene glycol)–polylactide (LA n –EG m –LA n ) triblock copolymers as insulin delivery system: spectroscopic studies

  • Pouneh Sadat PourhosseiniEmail author
  • Reza Amani
  • Ali Akbar Saboury
  • Farhood Najafi
  • Mohammad Imani
Original Paper

Abstract

A series of triblock copolymers are synthesized by the ring-opening polymerization of l-lactide in the presence of PEG of various molecular weights. Firstly, the (lactic acid) n –(ethylene glycol) m –(lactic acid) n (LA n –EG m –LA n ) copolymers are characterized by 1H NMR and GPC studies. Micelles, prepared in aqueous media by the direct dissolution method, are characterized by TEM and DLS. In vitro release behavior of bovine insulin from LA37–EG136–LA37 micelles is evaluated at 37 °C. According to results, nearly 90 wt% of insulin is released over 6 days by diffusion in a biphasic pattern. Secondly, a comparative study of the interactions occurring between insulin (both bovine and human) and the LA37–EG136–LA37 triblock copolymer is carried out using different spectroscopic techniques. UV–visible spectroscopy shows that the copolymer binds spontaneously to both proteins with a similar stoichiometry. However, a higher affinity was observed for bovine insulin. Far-UV CD spectroscopy reveals that the secondary structure of both proteins changes in the presence of the copolymer, although the extent of changes in bovine insulin is larger. Acrylamide quenching experiments display reduced accessibility of tyrosines at high copolymer concentrations. In these conditions, the major decrease in the α-helical content of the proteins causes tyrosines to be exposed to the nonpolar environment of the micelles and thus shielded from the aqueous solvent. Results demonstrate that upon interaction with the copolymer, the microenvironment around tyrosines is rearranged, the extent of which depends on the copolymer concentration. Altogether, drug–copolymer interactions need to be considered when attempting to use polymeric formulations as delivery carriers of peptide drugs.

Keywords

Insulin Circular dichroism (CD) Fluorescence spectroscopy Polylactide (PLA) Triblock copolymer 

Abbreviations

CD

Circular dichroism

DMF

Dimethylformamide

HBsAg

Hepatitis B surface antigen

HLB

Hydrophilic–lipophilic balance

LAn–EGm–LAn

(Lactic acid) n –(ethylene glycol) m –(lactic acid) n

PEG

Poly(ethylene glycol)

PEO

Poly(ethylene oxide)

PLA

Poly(lactic acid)

GPC

Gel permeation chromatography

Notes

Acknowledgements

The authors thank the Iran National Science Foundation (INSF) and Research Council of University of Tehran for their financial support.

Supplementary material

13738_2017_1198_MOESM1_ESM.docx (112 kb)
Supplementary material 1 (DOCX 112 kb)

References

  1. 1.
    H. Cho, J. Gao, G.S. Kwon, J. Control. Release 240, 191 (2016)CrossRefGoogle Scholar
  2. 2.
    J. Li, S. Guo, M. Wang, L. Ye, F. Yao, R. Soc, Chem. Adv. 5, 19484 (2015)Google Scholar
  3. 3.
    S. Essa, J.M. Rabanel, P. Hildgen, Eur. J. Pharm. Biopharm. 75, 96 (2010)CrossRefGoogle Scholar
  4. 4.
    Q. Song, X. Wang, Q. Hu, M. Huang, L. Yao, H. Qi, Y. Qiu, X. Jiang, J. Chen, H. Chen, X. Gao, Int. J. Pharm. 445, 58 (2013)CrossRefGoogle Scholar
  5. 5.
    W.-C. Lee, Y.-C. Li, I.-M. Chu, Macromol. Biosci. 6, 846 (2006)CrossRefGoogle Scholar
  6. 6.
    A. Ouahab, N. Cheraga, V. Onoja, Y. Shen, J. Tu, Int. J. Pharm. 466, 233 (2014)CrossRefGoogle Scholar
  7. 7.
    A. Angelopoulou, E. Voulgari, E.K. Diamanti, D. Gournis, K. Avgoustakis, Eur. J. Pharm. Biopharm. 93, 18 (2015)CrossRefGoogle Scholar
  8. 8.
    Y. Zhang, X. Wu, Y. Han, F. Mo, Y. Duan, S. Li, Int. J. Pharm. 386, 15 (2010)CrossRefGoogle Scholar
  9. 9.
    H. Moroishi, C. Yoshida, Y. Murakami, Colloids Surf. B 102, 597 (2013)CrossRefGoogle Scholar
  10. 10.
    H. Cui, J. Shao, Y. Wang, P. Zhang, X. Chen, Y. Wei, Biomacromol 14, 1904 (2013)CrossRefGoogle Scholar
  11. 11.
    Y.-I. Hsu, K. Masutani, T. Yamaoka, Y. Kimura, Polymer 67, 157 (2015)CrossRefGoogle Scholar
  12. 12.
    A. Toncheva, R. Mincheva, M. Kancheva, N. Manolova, I. Rashkov, P. Dubois, N. Markova, Eur. Polym. J. 75, 223 (2016)CrossRefGoogle Scholar
  13. 13.
    L. Yang, X. Qi, P. Liu, A. El Ghzaouia, S. Li, Int. J. Pharm. 394, 43 (2010)CrossRefGoogle Scholar
  14. 14.
    L. Yang, Z. Zhao, J. Wei, A. El Ghzaoui, S. Li, J. Colloid Interface Sci. 314, 470 (2007)CrossRefGoogle Scholar
  15. 15.
    D.G. Abebe, K.-Y. Liu, S.R. Mishra, A.H.F. Wu, R.N. Lamb, T. Fujiwara, R. Soc, Chem. Adv. 5, 96019 (2015)Google Scholar
  16. 16.
    C. Giovino, I. Ayensu, J. Tetteh, J.S. Boateng, Colloids Surf. B 112, 9 (2013)CrossRefGoogle Scholar
  17. 17.
    C. Giovino, I. Ayensu, J. Tetteh, J.S. Boateng, Int. J. Pharm. 428, 143 (2012)CrossRefGoogle Scholar
  18. 18.
    A.K. Jain, A.K. Goyal, N. Mishra, B. Vaidya, S. Mangal, S.P. Vyas, Int. J. Pharm. 387, 253 (2010)CrossRefGoogle Scholar
  19. 19.
    K. Na, K.H. Lee, D.H. Lee, Y.H. Bae, Eur. J. Pharm. Sci. 27, 115 (2006)CrossRefGoogle Scholar
  20. 20.
    G. He, L.L. Ma, J. Pan, S. Venkatraman, Int. J. Pharm. 334, 48 (2007)CrossRefGoogle Scholar
  21. 21.
    Y. Li, X.R. Qi, Y. Maitani, T. Nagai, Nanotechnology 20, 1 (2009)Google Scholar
  22. 22.
    Z. Zhang, X. Xiong, J. Wan, L. Xiao, L. Gan, Y. Feng, H. Xu, X. Yang, Biomaterials 33, 7233 (2012)CrossRefGoogle Scholar
  23. 23.
    Y. Haggag, Y. Abdel-Wahab, O. Ojo, M. Osman, S. El-Gizawy, M. El-Tanani, A. Faheem, P. McCarron, Int. J. Pharm. 499, 236 (2016)CrossRefGoogle Scholar
  24. 24.
    Z. Sideratou, N. Sterioti, D. Tsiourvas, L.-A. Tziveleka, A. Thanassoulas, G. Nounesis, C.M. Paleos, J. Colloid Interface Sci. 351, 433 (2010)CrossRefGoogle Scholar
  25. 25.
    P.S. Pourhosseini, R. Amani, A.A. Saboury, F. Najafi, M. Imani, J. Iran. Chem. Soc. 11, 467 (2014)CrossRefGoogle Scholar
  26. 26.
    J. Brange, L. Langkjǽr, in Stability and Characterization of Protein and Peptide Drugs, ed. by Y.J. Wang, R. Pearlman (Plenum Press, New York, 1993). Ch. 11 Google Scholar
  27. 27.
    P. Ouyang, Y.-Q. Kang, G.-F. Yin, Z.-B. Huang, Y.-D. Yao, X.-M. Liao, Front. Mater. Sci. Chin. 3, 15 (2009)CrossRefGoogle Scholar
  28. 28.
    J. Sambrook, E.F. Fritsch, T. Maniatis, Molecular Cloning: A Laboratory Manual, 2nd edn., Book 3 (CSH Cold Spring Harbor Laboratory Press, New York, 1989), Appendix BGoogle Scholar
  29. 29.
    P.S. Pourhosseini, A.A. Saboury, F. Najafi, M.N. Sarbolouki, Biochim. Biophys. Acta Proteins Proteomics 1774, 1274 (2007)CrossRefGoogle Scholar
  30. 30.
    B. Kim, N.A. Peppas, Int. J. Pharm. 266, 29 (2003)CrossRefGoogle Scholar
  31. 31.
    A. Ahmad, V.N. Uversky, D. Hong, A.L. Fink, J. Biol. Chem. 280, 42669 (2005)CrossRefGoogle Scholar
  32. 32.
    N. Elvassore, A. Bertucco, P. Caliceti, J. Pharm. Sci. 90, 1628 (2001)CrossRefGoogle Scholar
  33. 33.
    M. Ye, S. Kim, K. Park, J. Control. Release 146, 241 (2010)CrossRefGoogle Scholar
  34. 34.
    M.R. Esfahani, V.L. Pallem, H.A. Stretz, M.J.M. Wells, Spectrochim. Acta Part A 175, 100 (2017)CrossRefGoogle Scholar
  35. 35.
    A.J. Owen, Agilent Technologies, Application Note, publication number 5963-3940E (1994)Google Scholar
  36. 36.
    A.A. Saboury, M.S. Atri, M.H. Sanati, A.A. Moosavi-Movahedi, G.H. Hakimelahi, M. Sadeghi, Biopolymers 81, 120 (2006)CrossRefGoogle Scholar
  37. 37.
    U. Cogan, M. Kopelman, S. Mokady, M. Shintzky, Eur. J. Biochem. 65, 71 (1976)CrossRefGoogle Scholar
  38. 38.
    A. Rösler, G.W.M. Vandermeulen, H.-A. Klok, Adv. Drug Deliv. Rev. 64, 270 (2012)CrossRefGoogle Scholar
  39. 39.
    T. Fujiwara, M. Miyamoto, Y. Kimura, T. Iwata, Y. Doi, Macromolecules 34, 4043 (2001)CrossRefGoogle Scholar
  40. 40.
    A. Accardo, D. Tesauro, G. Morelli, Polym. J. 45, 481 (2013)CrossRefGoogle Scholar
  41. 41.
    A.E. Felber, M.-H. Dufresne, J.-C. Leroux, Adv. Drug Deliv. Rev. 64, 979 (2012)CrossRefGoogle Scholar
  42. 42.
    Z. Dai, L. Piao, X. Zhang, M. Deng, X. Chen, X. Jing, Colloid Polym. Sci. 282, 343 (2004)CrossRefGoogle Scholar
  43. 43.
    P. Dimitrov, S. Rangelov, A. Dworak, C.B. Tsvetanov, Macromolecules 37, 1000 (2004)CrossRefGoogle Scholar
  44. 44.
    T. Liu, Z. Zhou, C. Wu, V.M. Nace, B. Chu, J. Phys. Chem. B 102, 2875 (1998)CrossRefGoogle Scholar
  45. 45.
    Y. Zhang, H.F. Chan, K.W. Leong, Adv. Drug Deliv. Rev. 65, 104 (2013)CrossRefGoogle Scholar
  46. 46.
    G. Sharma, K. Wilson, C.F. van der Walle, N. Sattar, J.R. Petrie, M.N.V. Ravi Kumar, Eur. J. Pharm. Biopharm. 76, 159 (2010)CrossRefGoogle Scholar
  47. 47.
    B. Jeong, Y.H. Bae, S.W. Kim, J. Control. Release 63, 155 (2000)CrossRefGoogle Scholar
  48. 48.
    D.L. Nelson, M.M. Cox, Lehninger Principles of Biochemistry, 5th edn. (W.H. Freeman and Company, New York, 2008), p. 73Google Scholar
  49. 49.
    Z. Yong, D. Yingjie, L. Ming, D.Q.M. Craig, L. Zhengqiang, J. Colloid Interface Sci. 337, 322 (2009)CrossRefGoogle Scholar
  50. 50.
    A. Ahmad, I.S. Millett, S. Doniach, V.N. Uversky, A.L. Fink, Biochemistry 42, 11404 (2003)CrossRefGoogle Scholar
  51. 51.
    J.R. Lackowicz, Principles of Fluorescence Spectroscopy, 3rd edn. (Springer, Singapore, 2006), p. 531CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2017

Authors and Affiliations

  • Pouneh Sadat Pourhosseini
    • 1
    Email author
  • Reza Amani
    • 2
  • Ali Akbar Saboury
    • 2
  • Farhood Najafi
    • 3
  • Mohammad Imani
    • 4
  1. 1.Faculty of Biological SciencesAlzahra UniversityTehranIran
  2. 2.Institute of Biochemistry and BiophysicsUniversity of TehranTehranIran
  3. 3.Department of Resin and AdditivesInstitute for Color Science and TechnologyTehranIran
  4. 4.Iran Polymer and Petrochemical InstituteTehranIran

Personalised recommendations