Density functional theory (DFT) study of O3 molecules adsorbed on nitrogen-doped TiO2/MoS2 nanocomposites: applications to gas sensor devices

Abstract

Density functional theory calculations were carried out to investigate the adsorption behaviors of O3 molecules on the undoped and N-doped TiO2/MoS2 nanocomposites. With the inclusion of vdW interactions, which correctly account the long-range dispersion energy, the adsorption energies and final geometries of O3 molecules on the nanocomposite surfaces were improved. For O3 molecules on the considered nanocomposites, the binding sites were located on the fivefold coordinated titanium atoms of the TiO2 anatase. The structural properties of the adsorption systems were examined in view of the bond lengths and bond angles. The variation of electronic structures was also discussed in view of the density of states, molecular orbitals and distribution of spin densities. The results suggest that the adsorption of the O3 molecule on the N-doped TiO2/MoS2 nanocomposite is more favorable in energy than that on the pristine one, indicating that the N-doped nanocomposite has higher sensing capability than the pristine one. This implies that the N-doped TiO2/MoS2 nanocomposite would be an ideal O3 gas sensor. However, our calculations thus provide a theoretical basis for the potential applications of TiO2/MoS2 nanocomposites as efficient O3 sensors, leading to very interesting results in the context of air quality measurement.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972)

    CAS  Article  Google Scholar 

  2. 2.

    M. Fernandez-Garcia, A. Martinez-Arias, J.C. Hanson, J.A. Rodriguez, Nanostructured oxides in chemistry: characterization and properties. J. Chem. Rev. 104, 4063–4104 (2004)

    CAS  Article  Google Scholar 

  3. 3.

    A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. J. Chem. Rev. 95(3), 735 (1995)

    CAS  Article  Google Scholar 

  4. 4.

    K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Photocatalyst releasing hydrogen from water. Nature 440(7082), 295 (2006)

    CAS  Article  Google Scholar 

  5. 5.

    M. Fujihira, Y. Satoh, T. Osa, Heterogeneous photocatalytic oxidation of aromatic compounds on TiO2. Nature 293, 206–208 (1981)

    CAS  Article  Google Scholar 

  6. 6.

    J.F. Banfied, D.R. Veblen, Conversion of perovskite to anatase and TiO2 (B)—a TEM study and the use of fundamental building-blocks for understanding relationships among the TiO2 minerals. J. Am. Mineral. 77, 545–557 (1992)

    Google Scholar 

  7. 7.

    A. Nambu, J. Graciani, J.A. Rodriguez, Q. Wu, E. Fujita, J.F. Sanz, N doping of TiO2 (110) photoemission and density-functional studies. J. Chem. Phys. 125, 094706 (2006)

    CAS  Article  Google Scholar 

  8. 8.

    A.K. Rumaiz, J.C. Woicik, E. Cockayne, H.Y. Lin, G.H. Jaffari, S.I. Shah, Oxygen vacancies in N doped anatase TiO2: experiment and first-principles calculations. J. Appl. Phys. Lett. 95(26), 262111 (2009)

    Article  Google Scholar 

  9. 9.

    S. Helveg, J.V. Lauritsen, E. Lægsgaard, I. Stensgaard, J.K. Nørskov, B.S. Clausen, H. Topsøe, F. Besenbacher, Atomic-scale structure of single-layer MoS2 nanoclusters. J. Phys. Rev. Lett. 84, 951–954 (2000)

    CAS  Article  Google Scholar 

  10. 10.

    H. Wang, L. Yu, Y.H. Lee, Y. Shi, A. Hsu, M.L. Chin, L.J. Li, M. Dubey, J. Kong, T. Palacios, Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 12, 4674–4680 (2012)

    CAS  Article  Google Scholar 

  11. 11.

    L. Kou, C. Tang, Y. Zhang, T. Heine, C. Chen, T. Frauenheim, Tuning magnetism and electronic phase transitions by strain and electric field in zigzag MoS2 nanoribbons. J. Phys. Chem. Lett. 3, 2934–2941 (2012)

    CAS  Article  Google Scholar 

  12. 12.

    W. Wei, Y. Dai, B. Huang, In-plane interfacing effects of two-dimensional transition-metal dichalcogenide heterostructures. Phys. Chem. Chem. Phys. (2016). doi:10.1039/C6CP02741E

    Google Scholar 

  13. 13.

    P.A. Lee, Physics and Chemistry of Materials with Layered Structures: Optical and Electrical Properties (Reidel, Dordrecht, 1976)

    Google Scholar 

  14. 14.

    A. Aruchamy (ed.), Photochemistry and Photovoltaics of Layered Semiconductors (Kluwer, Dordrecht, 1992)

    Google Scholar 

  15. 15.

    F.A. Frame, F.E. Osterloh, CdSe–MoS2: a quantum size-confined p CdSe–MoS2: a quantum size-confined photocatalyst for hydrogen evolution from water under visible light. J. Phys. Chem. C 114, 10628–10633 (2010)

    CAS  Article  Google Scholar 

  16. 16.

    T.S. Li, G.L. Galli, Electronic properties of MoS2 nanoparticles. J. Phys. Chem. C 111, 16192–16196 (2007)

    CAS  Article  Google Scholar 

  17. 17.

    B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011)

    CAS  Article  Google Scholar 

  18. 18.

    D. Lembke, A. Kis, Breakdown of high-performance monolayer MoS2 transistors. ACS Nano 6, 10070–10075 (2012)

    CAS  Article  Google Scholar 

  19. 19.

    H. Li, Z. Yin, Q. He, H. Li, X. Huang, G. Lu, D.W.H. Fam, A.I.Y. Tok, H. Zhang, Fabrication of single-and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 8(1), 63–67 (2012)

    CAS  Article  Google Scholar 

  20. 20.

    Q. He, Z. Zeng, Z. Yin, H. Li, S. Wu, X. Huang, H. Zhang, Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small 8(19), 2994–2999 (2012)

    CAS  Article  Google Scholar 

  21. 21.

    A. Abbasi, J.J. Sardroodi, A.R. Ebrahimzadeh, Chemisorption of CH2O on N-doped TiO2 anatase nanoparticle as modified nanostructure media: a DFT study. Surf. Sci. 654, 20–32 (2016)

    CAS  Article  Google Scholar 

  22. 22.

    A. Abbasi, J.J. Sardroodi, N-doped TiO2 anatase nanoparticle as a highly sensitive gas sensor for NO2 detection: insights from DFT computations. Environ. Sci. Nano (2016). doi:10.1039/C6EN00159A

    Google Scholar 

  23. 23.

    A. Abbasi, J.J. Sardroodi, Modified N-doped TiO2 anatase nanoparticle as an ideal O3 gas sensor: insights from density functional theory calculations. Comput. Theor. Chem. 2016, 15–28 (1095)

    Google Scholar 

  24. 24.

    E.P. Felix, J.P. Filho, G. Garcia, A.A. Cardoso, A new fluorescence method for determination of ozone in ambient air. Microchem. J. 99(2), 530–534 (2011)

    CAS  Article  Google Scholar 

  25. 25.

    P. Hohenberg, W. Kohn, Inhomogeneous electron gas. J. Phys. Rev. 136, B864–B871 (1964)

    Article  Google Scholar 

  26. 26.

    W. Kohn, L. Sham, Self-Consistent equations including exchange and correlation effects. J. Phys. Rev 140, A1133–A1138 (1965)

    Article  Google Scholar 

  27. 27.

    The code, OPENMX, pseudoatomic basis functions, and pseudopotentials are available on a web site http://www.openmxsquare.org

  28. 28.

    T. Ozaki, H. Kino, Numerical atomic basis orbitals from H to Kr. J. Phys. Rev. B. 69, 195113 (2004)

    Article  Google Scholar 

  29. 29.

    T. Ozaki, H. Kino, Variationally optimized basis orbitals for biological molecules. J. Phys. Rev. B 72, 045121 (2005)

    Article  Google Scholar 

  30. 30.

    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. J. Phys. Rev. Lett. 78, 1396 (1997)

    CAS  Article  Google Scholar 

  31. 31.

    M.D. Piane, M. Corno, P. Ugliengo, Does dispersion dominate over H-bonds in drug-surface interactions? The case of silica-based materials as excipients and drug-delivery agents. J. Chem. Theory Comput. 9(5), 2404–2415 (2013)

    Article  Google Scholar 

  32. 32.

    M.D. Piane, S. Vaccari, M. Corno, P. Ugliengo, Silica-based materials as drug adsorbents: first principle investigation on the role of water microsolvation on ibuprofen adsorption. J. Phys. Chem. A 118(31), 5801–5807 (2014)

    Google Scholar 

  33. 33.

    N. Tasinato, D. Moro, P. Stoppa, C.A. Pietropolli, P. Toninello, S. Giorgianni, Adsorption of F2Cdbnd CFCl on TiO2 nano-powder: structures, energetics and vibrational properties from DRIFT spectroscopy and periodic quantum chemical calculations. Appl. Surf. Sci. 353, 986–994 (2015)

    CAS  Article  Google Scholar 

  34. 34.

    S. Grimme, Semiempirical GGA type density functional constructed with a long range dispersion correction. J. Comput. Chem. 27(15), 1787–1799 (2006)

    CAS  Article  Google Scholar 

  35. 35.

    A. Koklj, Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. J. Comput. Mater. Sci. 28, 155–168 (2003)

    Article  Google Scholar 

  36. 36.

    T.K. Gupta, Preparation and characterization of layered superconductors. Phys. Rev. B. 43, 5276–5279 (1991)

    CAS  Article  Google Scholar 

  37. 37.

    Y. Li, Z. Zhou, S. Zhang, Z. Chen, MoS2 nanoribbons: high stability and unusual electronic and magnetic properties. J. Am. Chem. Sci 130(49), 16739–16744 (2012)

    Article  Google Scholar 

  38. 38.

    H. Mathur, H.U. Baranger, Random Berry phase magnetoresistance as a probe of interface roughness in Si MOSFET’s. Phys. Rev. B. 64, 235325 (2001)

    Article  Google Scholar 

  39. 39.

    Web page at: http://rruff.geo.arizona.edu/AMS/amcsd.php

  40. 40.

    R.W.G. Wyckoff, Crystal structures, 2nd edn. (Interscience Publishers, New York, 1963)

    Google Scholar 

  41. 41.

    C. Wu, M. Chen, A.A. Skelton, P.T. Cummings, T. Zheng, Adsorption of arginine–glycine–aspartate tripeptide onto negatively charged rutile (110) mediated by cations: the effect of surface hydroxylation. ACS Appl. Mat. Interfaces 5, 2567–2579 (2013)

    CAS  Article  Google Scholar 

  42. 42.

    J. Liu, L. Dong, W. Guo, T. Liang, W. Lai, CO adsorption and oxidation on N-doped TiO2 nanoparticles. J. Phys. Chem. C 117, 13037–13044 (2013)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by Azarbaijan Shahid Madani University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amirali Abbasi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abbasi, A., Sardroodi, J.J. Density functional theory (DFT) study of O3 molecules adsorbed on nitrogen-doped TiO2/MoS2 nanocomposites: applications to gas sensor devices. J IRAN CHEM SOC 14, 2615–2626 (2017). https://doi.org/10.1007/s13738-017-1196-8

Download citation

Keywords

  • Density functional theory
  • TiO2
  • O3
  • TiO2/MoS2 nanocomposite
  • Adsorption