Journal of the Iranian Chemical Society

, Volume 14, Issue 12, pp 2615–2626 | Cite as

Density functional theory (DFT) study of O3 molecules adsorbed on nitrogen-doped TiO2/MoS2 nanocomposites: applications to gas sensor devices

  • Amirali AbbasiEmail author
  • Jaber Jahanbin Sardroodi
Original Paper


Density functional theory calculations were carried out to investigate the adsorption behaviors of O3 molecules on the undoped and N-doped TiO2/MoS2 nanocomposites. With the inclusion of vdW interactions, which correctly account the long-range dispersion energy, the adsorption energies and final geometries of O3 molecules on the nanocomposite surfaces were improved. For O3 molecules on the considered nanocomposites, the binding sites were located on the fivefold coordinated titanium atoms of the TiO2 anatase. The structural properties of the adsorption systems were examined in view of the bond lengths and bond angles. The variation of electronic structures was also discussed in view of the density of states, molecular orbitals and distribution of spin densities. The results suggest that the adsorption of the O3 molecule on the N-doped TiO2/MoS2 nanocomposite is more favorable in energy than that on the pristine one, indicating that the N-doped nanocomposite has higher sensing capability than the pristine one. This implies that the N-doped TiO2/MoS2 nanocomposite would be an ideal O3 gas sensor. However, our calculations thus provide a theoretical basis for the potential applications of TiO2/MoS2 nanocomposites as efficient O3 sensors, leading to very interesting results in the context of air quality measurement.


Density functional theory TiO2 O3 TiO2/MoS2 nanocomposite Adsorption 



This work has been supported by Azarbaijan Shahid Madani University.


  1. 1.
    A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972)CrossRefGoogle Scholar
  2. 2.
    M. Fernandez-Garcia, A. Martinez-Arias, J.C. Hanson, J.A. Rodriguez, Nanostructured oxides in chemistry: characterization and properties. J. Chem. Rev. 104, 4063–4104 (2004)CrossRefGoogle Scholar
  3. 3.
    A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. J. Chem. Rev. 95(3), 735 (1995)CrossRefGoogle Scholar
  4. 4.
    K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Photocatalyst releasing hydrogen from water. Nature 440(7082), 295 (2006)CrossRefGoogle Scholar
  5. 5.
    M. Fujihira, Y. Satoh, T. Osa, Heterogeneous photocatalytic oxidation of aromatic compounds on TiO2. Nature 293, 206–208 (1981)CrossRefGoogle Scholar
  6. 6.
    J.F. Banfied, D.R. Veblen, Conversion of perovskite to anatase and TiO2 (B)—a TEM study and the use of fundamental building-blocks for understanding relationships among the TiO2 minerals. J. Am. Mineral. 77, 545–557 (1992)Google Scholar
  7. 7.
    A. Nambu, J. Graciani, J.A. Rodriguez, Q. Wu, E. Fujita, J.F. Sanz, N doping of TiO2 (110) photoemission and density-functional studies. J. Chem. Phys. 125, 094706 (2006)CrossRefGoogle Scholar
  8. 8.
    A.K. Rumaiz, J.C. Woicik, E. Cockayne, H.Y. Lin, G.H. Jaffari, S.I. Shah, Oxygen vacancies in N doped anatase TiO2: experiment and first-principles calculations. J. Appl. Phys. Lett. 95(26), 262111 (2009)CrossRefGoogle Scholar
  9. 9.
    S. Helveg, J.V. Lauritsen, E. Lægsgaard, I. Stensgaard, J.K. Nørskov, B.S. Clausen, H. Topsøe, F. Besenbacher, Atomic-scale structure of single-layer MoS2 nanoclusters. J. Phys. Rev. Lett. 84, 951–954 (2000)CrossRefGoogle Scholar
  10. 10.
    H. Wang, L. Yu, Y.H. Lee, Y. Shi, A. Hsu, M.L. Chin, L.J. Li, M. Dubey, J. Kong, T. Palacios, Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 12, 4674–4680 (2012)CrossRefGoogle Scholar
  11. 11.
    L. Kou, C. Tang, Y. Zhang, T. Heine, C. Chen, T. Frauenheim, Tuning magnetism and electronic phase transitions by strain and electric field in zigzag MoS2 nanoribbons. J. Phys. Chem. Lett. 3, 2934–2941 (2012)CrossRefGoogle Scholar
  12. 12.
    W. Wei, Y. Dai, B. Huang, In-plane interfacing effects of two-dimensional transition-metal dichalcogenide heterostructures. Phys. Chem. Chem. Phys. (2016). doi: 10.1039/C6CP02741E Google Scholar
  13. 13.
    P.A. Lee, Physics and Chemistry of Materials with Layered Structures: Optical and Electrical Properties (Reidel, Dordrecht, 1976)Google Scholar
  14. 14.
    A. Aruchamy (ed.), Photochemistry and Photovoltaics of Layered Semiconductors (Kluwer, Dordrecht, 1992)Google Scholar
  15. 15.
    F.A. Frame, F.E. Osterloh, CdSe–MoS2: a quantum size-confined p CdSe–MoS2: a quantum size-confined photocatalyst for hydrogen evolution from water under visible light. J. Phys. Chem. C 114, 10628–10633 (2010)CrossRefGoogle Scholar
  16. 16.
    T.S. Li, G.L. Galli, Electronic properties of MoS2 nanoparticles. J. Phys. Chem. C 111, 16192–16196 (2007)CrossRefGoogle Scholar
  17. 17.
    B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011)CrossRefGoogle Scholar
  18. 18.
    D. Lembke, A. Kis, Breakdown of high-performance monolayer MoS2 transistors. ACS Nano 6, 10070–10075 (2012)CrossRefGoogle Scholar
  19. 19.
    H. Li, Z. Yin, Q. He, H. Li, X. Huang, G. Lu, D.W.H. Fam, A.I.Y. Tok, H. Zhang, Fabrication of single-and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 8(1), 63–67 (2012)CrossRefGoogle Scholar
  20. 20.
    Q. He, Z. Zeng, Z. Yin, H. Li, S. Wu, X. Huang, H. Zhang, Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small 8(19), 2994–2999 (2012)CrossRefGoogle Scholar
  21. 21.
    A. Abbasi, J.J. Sardroodi, A.R. Ebrahimzadeh, Chemisorption of CH2O on N-doped TiO2 anatase nanoparticle as modified nanostructure media: a DFT study. Surf. Sci. 654, 20–32 (2016)CrossRefGoogle Scholar
  22. 22.
    A. Abbasi, J.J. Sardroodi, N-doped TiO2 anatase nanoparticle as a highly sensitive gas sensor for NO2 detection: insights from DFT computations. Environ. Sci. Nano (2016). doi: 10.1039/C6EN00159A Google Scholar
  23. 23.
    A. Abbasi, J.J. Sardroodi, Modified N-doped TiO2 anatase nanoparticle as an ideal O3 gas sensor: insights from density functional theory calculations. Comput. Theor. Chem. 2016, 15–28 (1095)Google Scholar
  24. 24.
    E.P. Felix, J.P. Filho, G. Garcia, A.A. Cardoso, A new fluorescence method for determination of ozone in ambient air. Microchem. J. 99(2), 530–534 (2011)CrossRefGoogle Scholar
  25. 25.
    P. Hohenberg, W. Kohn, Inhomogeneous electron gas. J. Phys. Rev. 136, B864–B871 (1964)CrossRefGoogle Scholar
  26. 26.
    W. Kohn, L. Sham, Self-Consistent equations including exchange and correlation effects. J. Phys. Rev 140, A1133–A1138 (1965)CrossRefGoogle Scholar
  27. 27.
    The code, OPENMX, pseudoatomic basis functions, and pseudopotentials are available on a web site
  28. 28.
    T. Ozaki, H. Kino, Numerical atomic basis orbitals from H to Kr. J. Phys. Rev. B. 69, 195113 (2004)CrossRefGoogle Scholar
  29. 29.
    T. Ozaki, H. Kino, Variationally optimized basis orbitals for biological molecules. J. Phys. Rev. B 72, 045121 (2005)CrossRefGoogle Scholar
  30. 30.
    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. J. Phys. Rev. Lett. 78, 1396 (1997)CrossRefGoogle Scholar
  31. 31.
    M.D. Piane, M. Corno, P. Ugliengo, Does dispersion dominate over H-bonds in drug-surface interactions? The case of silica-based materials as excipients and drug-delivery agents. J. Chem. Theory Comput. 9(5), 2404–2415 (2013)CrossRefGoogle Scholar
  32. 32.
    M.D. Piane, S. Vaccari, M. Corno, P. Ugliengo, Silica-based materials as drug adsorbents: first principle investigation on the role of water microsolvation on ibuprofen adsorption. J. Phys. Chem. A 118(31), 5801–5807 (2014)Google Scholar
  33. 33.
    N. Tasinato, D. Moro, P. Stoppa, C.A. Pietropolli, P. Toninello, S. Giorgianni, Adsorption of F2Cdbnd CFCl on TiO2 nano-powder: structures, energetics and vibrational properties from DRIFT spectroscopy and periodic quantum chemical calculations. Appl. Surf. Sci. 353, 986–994 (2015)CrossRefGoogle Scholar
  34. 34.
    S. Grimme, Semiempirical GGA type density functional constructed with a long range dispersion correction. J. Comput. Chem. 27(15), 1787–1799 (2006)CrossRefGoogle Scholar
  35. 35.
    A. Koklj, Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. J. Comput. Mater. Sci. 28, 155–168 (2003)CrossRefGoogle Scholar
  36. 36.
    T.K. Gupta, Preparation and characterization of layered superconductors. Phys. Rev. B. 43, 5276–5279 (1991)CrossRefGoogle Scholar
  37. 37.
    Y. Li, Z. Zhou, S. Zhang, Z. Chen, MoS2 nanoribbons: high stability and unusual electronic and magnetic properties. J. Am. Chem. Sci 130(49), 16739–16744 (2012)CrossRefGoogle Scholar
  38. 38.
    H. Mathur, H.U. Baranger, Random Berry phase magnetoresistance as a probe of interface roughness in Si MOSFET’s. Phys. Rev. B. 64, 235325 (2001)CrossRefGoogle Scholar
  39. 39.
  40. 40.
    R.W.G. Wyckoff, Crystal structures, 2nd edn. (Interscience Publishers, New York, 1963)Google Scholar
  41. 41.
    C. Wu, M. Chen, A.A. Skelton, P.T. Cummings, T. Zheng, Adsorption of arginine–glycine–aspartate tripeptide onto negatively charged rutile (110) mediated by cations: the effect of surface hydroxylation. ACS Appl. Mat. Interfaces 5, 2567–2579 (2013)CrossRefGoogle Scholar
  42. 42.
    J. Liu, L. Dong, W. Guo, T. Liang, W. Lai, CO adsorption and oxidation on N-doped TiO2 nanoparticles. J. Phys. Chem. C 117, 13037–13044 (2013)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2017

Authors and Affiliations

  1. 1.Molecular Simulation Laboratory (MSL)Azarbaijan Shahid Madani UniversityTabrizIran
  2. 2.Computational Nanomaterials Research Group (CNRG)Azarbaijan Shahid Madani UniversityTabrizIran
  3. 3.Department of Chemistry, Faculty of Basic SciencesAzarbaijan Shahid Madani UniversityTabrizIran

Personalised recommendations