Skip to main content
Log in

Intercalation of cytosine into Eu3+-doped hydrocalumite and their fluorescent responses

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Intercalation of cytosine into Eu3+-doped hydrocalumites and the fluorescence of the Eu3+-doped hydrocalumite response to cytosine has been investigated. XRD patterns showed that the basal spacing of Eu-doped hydrocalumite obviously increased after it exposed to various content of cytosine, revealing the intercalation of cytosine into Eu3+-doped hydrocalumite. TG-DSC curves and IR spectra of the intercalated samples are different from that of the Eu-doped hydrocalumite and cytosine, indicating the interaction between the Eu3+-doped hydrocalumite and cytosine. Fluorescent spectra suggested that the fluorescent changes of Eu3+-doped hydrocalumite depended on the concentration of cytosine solution. This fluorescent change would be potential application in biological probe in view of the biocompatibility of Ca2+ ions and the fluorescence of Eu3+ ions. Moreover, the Eu3+-doped hydrocalumite would be a healthy and cheap fluorescent material applied in biology or healing drugs fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Dembska, The analytical and biomedical potential of cytosine-rich oligonucleotides: a review. Anal. Chim. Acta 930, 1–12 (2016)

    Article  CAS  Google Scholar 

  2. H.A. Tajmir-Riahi, AZT binding to DNA and RNA: molecular modeling and biological significance. J. Iran. Chem. Soc. 2, 78–84 (2005)

    Article  CAS  Google Scholar 

  3. S. Jalili, M. Maddah, Molecular dynamics simulation of the sliding of distamycin anticancer drug along DNA: interactions and sequence selectivity. J. Iran. Chem. Soc. 14, 531–540 (2017)

    Article  CAS  Google Scholar 

  4. J.V. Flores, L. Cordero-Espinoza, F. Oeztuerk-Winder, A. Andersson-Rolf, T. Selmi, S. Blanco, J. Tailor, S. Dietmann, M. Frye, Cytosine-5 RNA methylation regulates neural stem cell differentiation and motility. Stem Cell Rep. 8, 112–124 (2017)

    Article  CAS  Google Scholar 

  5. H. Ikehata, Y.M. Chang, M. Yokoi, M. Yamamoto, F. Hanaoka, Remarkable induction of UV-signature mutations at the 3′-cytosine of dipyrimidine sites except at 5′-TCG-3′ in the UVB-exposed skin epidermis of xeroderma pigmentosum variant model mice. DNA Repair 22, 112–122 (2014)

    Article  CAS  Google Scholar 

  6. N. Xuan, B. Rajashekar, S. Kasvandik, J.F. Picimbon, Structural components of chemosensory protein mutations in the silkworm moth, Bombyx mori. Agri Gene 2, 53–58 (2016)

    Article  Google Scholar 

  7. Y. Zhang, J.H. Pan, G.W. Zhang, X.Y. Zhou, Intercalation of herbicide propyzamide into DNA using acridine orange as a fluorescence probe. Sens. Actuators, B 206, 630–639 (2015)

    Article  CAS  Google Scholar 

  8. J. Park, M. Song, W. Jang, H. Chae, G.D. Lee, K.T. Kim, H. Park, M. Kim, Y. Kim, Peptide nucleic acid probe-based fluorescence melting curve analysis for rapid screening of common JAK2, MPL, and CALR mutations. Clin. Chim. Acta 465, 82–90 (2017)

    Article  CAS  Google Scholar 

  9. J. Hall, D. Hüsken, U. Pieles, H.E. Moser, R. Häner, Efficient sequence-specific cleavage of RNA using novel europium complexes conjugated to oligonucleotides. Chem. Bio. 1, 185–190 (1994)

    Article  CAS  Google Scholar 

  10. Y.X. Ci, Y.Z. Li, X. Liu, Selective determination of DNA by its enhancement effect on the fluorescence of the Eu-tetracycline complex. J. Anal. Chem. 67, 1785–1788 (1995)

    Article  CAS  Google Scholar 

  11. M. Li, P.R. Selvin, Amine-reactive forms of a luminescent diethylenetriaminepentaacetic acid chelate of terbium and europium: attachment to DNA and energy transfer measurements. Bioconjugate Chem. 8, 127–132 (1997)

    Article  CAS  Google Scholar 

  12. P. Hurskainen, P. Dahlen, J. Ylikoski, M. Kwiatkowski, H. Siitari, T. L€ovgren, Preparation of europium-labelled DNA probes and their properties. Nucleic Acids Res. 19, 1057–1061 (1991)

    Article  CAS  Google Scholar 

  13. X. Wu, C.Y. Guo, J.H. Yang, M.Q. Wang, Y.J. Chen, J. Liu, The sensitive determination of nucleic acids using fluorescence enhancement of Eu3+-benzoylacetonecetyltrimethylammonium bromide-nucleic acid system. J. Fluoresc. 15(2005), 655–661 (2005)

    Article  CAS  Google Scholar 

  14. A.S. Kupryakov, V.F. Plyusnin, V.P. Grivin, J.A. Bryleva, S.V. Larionov, Interligand electron transfer as a reason of very weak red luminescence of Eu((i-Bu)2PS2)3Phen and Eu(C4H8NCS2) 3 Phen complexes. J. Lumin. 176, 130–135 (2016)

    Article  CAS  Google Scholar 

  15. Y.M. Fadieiev, S.S. Smola, E.V. Malinka, N.V. Rusakova, Study of association of Eu(III) β-diketonato-1,10-phenanthroline complexes in silica-based hybrid materials. J. Lumin. 183, 121–128 (2017)

    Article  CAS  Google Scholar 

  16. Y.L. He, J.L. He, H.R. Zhang, Y.L. Liu, B.F. Lei, Luminescent properties and energy transfer of luminescent carbon dots assembled mesoporous Al2O3: Eu3 + co-doped materials for temperature sensing. J. Colloid and Interface Sci. 496, 8–15 (2017)

    Article  CAS  Google Scholar 

  17. K.N. Kumar, R. Padma, L. Vijayalakshmi, J.S.M. Nithya, M. Kang, Promising red emission from functionalized multi walled carbon nanotubes embedded co-doped Bi3+ + Eu3+: PVA polymer nanocomposites for photonic applications. J. Lumin. 182, 208–219 (2017)

    Article  CAS  Google Scholar 

  18. L. Li, Q. Pan, G.W. Song, Application of a europium complex, Eu(AA)3phen (AA = acrylic acid, phen = 1,10-phenanthroline) as a spectroscopic probe and cleaving reagent of DNA. Mater. Sci. Eng., C 33, 2078–2083 (2013)

    Article  CAS  Google Scholar 

  19. H. He, C.G. Niu, G.M. Zeng, M. Ruan, P.Z. Qin, J. Liu, Determination for Enterobacter cloacae based on a europium ternary complex labeled DNA probe. Spectrochimica Acta Part A 82, 493–497 (2011)

    Article  CAS  Google Scholar 

  20. R. Rojas, Copper, lead and cadmium removal by Ca Al layered double hydroxides. Appl. Clay Sci. 87, 254–259 (2014)

    Article  CAS  Google Scholar 

  21. E. Pérez-Barrado, M.C. Pujol, M. Aguiló, Y. Cesteros, F. Díaz, J. Pallarès, F.L. Marsal, P. Salagre, Fast aging treatment for the synthesis of Ca–Al–Cl LDHs using microwaves. Appl. Clay Sci. 80/81, 313–319 (2013)

    Article  Google Scholar 

  22. M. Szabados, R. Mészáros, S. Erdei, Z. Kónya, A. Kukovecz, P. Sipos, I. Pálinkó, Ultrasonically-enhanced mechanochemical synthesis of CaAl-layered double hydroxides intercalated by a variety of inorganic anions. Ultrasonics Sonochem. 31, 409–416 (2016)

    Article  CAS  Google Scholar 

  23. F.P. Sá, B.N. Cunha, L.M. Nunes, Effect of pH on the adsorption of sunset yellow FCF food dye into a layered double hydroxide (CaAl-LDH-NO3). Chem. Eng. J. 215/216, 122–127 (2013)

    Article  Google Scholar 

  24. Y.F. Chen, S.H. Zhou, F. Li, Y.W. Chen, Synthesis and photoluminescence of Eu-doped Zn/Al layered double hydroxides. J. Mater. Sci. 45, 6417–6423 (2010)

    Article  CAS  Google Scholar 

  25. Y.F. Chen, F. Li, S.H. Zhou, J.C. Wei, Y.F. Dai, Y.W. Chen, Structure and photoluminescence of Mg–Al–Eu ternary hydrotalcite-like layered double hydroxides. J. Solid State Chem. 183, 2222–2226 (2010)

    Article  CAS  Google Scholar 

  26. Y.F. Chen, S.H. Zhou, F. Li, F. Li, Y.W. Chen, Photoluminescence of Eu-doped ZnAl-LDH depending on phase transitions caused by annealing temperatures. J. Lumin. 131, 701–704 (2011)

    Article  CAS  Google Scholar 

  27. Y.F. Chen, S.H. Zhou, F. Li, J.C. Wei, Y.F. Dai, Y.W. Chen, Fluorescence of Mg–Al–EuTernary layered double hydroxide sensitivity to phenylalanine. J Fluoresc 21, 167–1682 (2011)

    Google Scholar 

  28. Y.F. Chen, F. Li, G.S. Yu, X.J. Yang, Fluorescence of Zn–Al–Eu ternary layered hydroxide response to phenylalanine. Spectrochim. Acta Part A 86, 625–630 (2012)

    Article  CAS  Google Scholar 

  29. R.W. Ormsby, T. McNally, C.A. Mitchell, A. Musumeci, T. Schiller, P. Halley, L. Gahan, D. Martin, S.V. Smith, N.J. Dunne, Chemical modification of multiwalled carbon nanotube with a bifunctional caged ligand for radioactive labelling. Acta Mater. 64, 54–61 (2014)

    Article  CAS  Google Scholar 

  30. C. Guo, Q. Jin, Y.Y. Wang, B. Ding, Y. Li, J.Z. Huo, X.J. Zhao, Developing a unique metal-organic framework-{[Cd(abtz)2(NCS)] (ClO4)}n (abtz = 1-(4-aminobenzyl)-1,2,4- triazole) as fluorescent probe for highly selective and sensitive detection of ascorbic acid in biological liquid. Sens. Actuators, B 234, 184–191 (2016)

    Article  CAS  Google Scholar 

  31. S.L. Xu, B.W. Zhang, Z.R. Chen, J.H. Yu, D.G. Evans, F.Z. Zhang, A General and scalable formulation of pure CaAl-layered double hydroxide via an organic/water solution route. Ind. Eng. Chem. Res. 50, 6567–6572 (2011)

    Article  CAS  Google Scholar 

  32. Y.F. Chen, X.Q. Wang, Y. Bao, W.N. Wu, Study on structure and fluorescence of Tb-doped CaAl LDHs prepared in ethanol/water system. J. Sol–Gel Sci. 81, 413–422 (2017)

    Article  CAS  Google Scholar 

  33. P. Zhang, G.R. Qian, H.F. Cheng, J. Yang, H.S. Shi, R.L. Frost, Near-infrared and mid-infra red investigations of Na-dodecylbenzenesulfate intercalated into hydrocalumite chloride (CaAl-LDH-Cl). Spectrochim. Acta Part A 79, 548–553 (2011)

    Article  CAS  Google Scholar 

  34. R.O. Grishchenko, A.L. Emelinaa, P.Y. Makarov, Thermodynamic properties and thermal behavior of Friedel’s salt. Thermochim. Acta 570, 74–79 (2013)

    Article  CAS  Google Scholar 

  35. Y.X. Chen, Z.H. Shui, W. Chen, G.W. Chen, Chloride binding of synthetic Ca–Al–NO3 LDHs in hardened cement paste. Construct. Buil. Mater. 93, 1051–1058 (2015)

    Article  Google Scholar 

  36. S. Kalyanaraman, V. Krishnakumar, K. Ganesan, Vibrational spectroscopic analysis of cytosine monohydrate and its copper(II) complex. Spectrochim. Acta Part A 66, 1340–1346 (2007)

    Article  CAS  Google Scholar 

  37. J.M. Bakkera, J.Y. Salpinb, P. Maître, Tautomerism of cytosine probed by gas phase IR spectroscopy, internat. J. Mass Spectro. 283, 214–221 (2009)

    Google Scholar 

  38. V. Subramanian, K. Chitra, K. Venkatesh, S. Sanker, T. Ramasami, Comparative study on the vibrational IR spectra of cytosine and thiocytosine by various semi-empirical quantum mechanical methods. Chem. Phys. Lett. 264, 92–100 (1997)

    Article  CAS  Google Scholar 

  39. J.C. Tenorio, R.S. Corrêa, A.A. Batista, J. Ellena, N—H…Br, Br…π and π…π interactions toward self-assembly of the cytosine hydrobromide: crystal structure, infrared spectroscopy and thermal behavior. J. Mole. Struct. 2013, 274–281 (1048)

    Google Scholar 

  40. A. Brotons, R.M. Arán-Ais, J.M. Feliu, V. Montiel, J. Iniesta, F.J. Vidal-Iglesias, J. Solla-Gullón, Electrochemical detection of cytosine and 5-methylcytosine on Au(111) surfaces. Electrochem. Commun. 65, 27–30 (2016)

    Article  CAS  Google Scholar 

  41. B.Y. Ua, F.P. Glasser, Friedel’s salt, Ca2Al(OH)6(Cl, OH)2H2O: it’s solid solutions and their role in chloride binding. Cem. Concr. Res. 28, 1713–1723 (1998)

    Article  Google Scholar 

  42. L.P. Zheng, S.X. Xia, X.Y. Lu, Z.Y. Hou, Transesterification of glycerol with dimethyl carbonate over calcined Ca–Al hydrocalumite. Chin. J. Catal. 36, 1759–1765 (2015)

    Article  CAS  Google Scholar 

  43. J. Zhang, Y.F. Xu, G.R. Qian, Z.P. Xu, C. Chen, Q. Liu, Reinvestigation of dehydration and dehydroxylation of hydrotalcite-like compounds through combined TG-DTA-MS analyses. J. Phys. Chem. C 114, 10768–10774 (2010)

    Article  CAS  Google Scholar 

  44. L.P. Zheng, S.X. Xia, X.Y. Lu, Z.Y. Hou, Transesterification of glycerol with dimethyl carbonate over calcined Ca–Al hydrocalumite. Chin. J. Catal. 36, 1759–1765 (2015)

    Article  CAS  Google Scholar 

  45. B. Das, J.B. Baruah, Assemblies of cytosine within H-bonded network of adipic acid and citric acid. J. Mole. Struct. 2011, 134–138 (1001)

    Google Scholar 

  46. Z.Y. Mao, Y.C. Zhu, L. Gan, F.F. Xu, Identification and quantification of varied valence Eu ions by photoluminescence spectrum and electron energy loss spectrum. J. Lumin. 148, 334–337 (2014)

    Article  CAS  Google Scholar 

  47. D.M. Wang, J. Fan, M.M. Shang, K. Li, Z. Yang, H.Z. Lian, J. Lin, Pechini-type sol–gel synthesis and multicolor-tunable emission properties of GdY(MoO4)3:RE3+(RE = Eu, Dy, Sm, Tb) phosphors. Opt. Mater. 51, 162–170 (2016)

    Article  CAS  Google Scholar 

  48. Y. Kumar, M. Pal, M. Herrera, X. Mathew, Effect of Eu ion incorporation on the emission behavior of Y2O3 nanophosphors: a detailed study of structural and optical properties. Opt. Mater. 60, 159–168 (2016)

    Article  CAS  Google Scholar 

  49. P.A.A.P. Marques, M.T.S. Tanaka, E. Longo, E.R. Leite, I.L.V. Rosa, The role of the Eu3 + concentration on the SrMoO4: Eu phosphor properties: synthesis, characterization and photophysical studies. J. Fluoresc. 21, 893–899 (2011)

    Article  CAS  Google Scholar 

  50. V. Kumar, S.K. Swami, A. Kumar, O.M. Ntwaeaborwa, H.C. Swart, Eu3+ doped down shifting TiO2 layer for efficient dye-sensitized solar cells. J. Colloid Interf. Sci. 484, 24–32 (2016)

    Article  CAS  Google Scholar 

  51. V. Taidakov, B.E. Zaitsev, A.N. Lobanov, A.G. Vitukhnovskii, N.P. Datskevich, A.S. Selyukov, Synthesis and luminescent properties of neutral Eu(III) and Gd(III) complexes with 1-(1,5-dimethyl-1 h-pyrazol-4-yl)-4,4,4-trifluoro-1,3-butanedione and 4,4,5,5,6,6,6- heptafluoro-1-(1-methyl-1H-pyrazol-4-yl)-1,3-hexanedione. Russ. J. Inorg. Chem. 58, 411–415 (2013)

    Article  CAS  Google Scholar 

  52. V. Muhr, M. Buchner, T. Hirsch, D.J. Jovanović, S.D. Dolić, M.D. Dramićanin, O.S. Wolfbeis, Europium-doped GdVO4 nanocrystals as a luminescent probe for hydrogen peroxide and for enzymatic sensing of glucose. Sens. Actuators, B 241, 349–356 (2017)

    Article  CAS  Google Scholar 

  53. N.I. Steblevskaya, M.A. Medkov, M.V. Belobeletskaya, Luminophores based on lanthanide phosphates obtained by extraction pyrolytic method. Russ. J. Inorg. Chem. 60, 214–218 (2015)

    Article  CAS  Google Scholar 

  54. N. Huittinen, Y. Arinicheva, M. Schmidt, S. Neumeier, T. Stumpf, using Eu3+ as an atomic probe to investigate the local environment in LaPO4–GdPO4 monazite end-members. J. Colloid Interf. Sci. 483, 139–145 (2016)

    Article  CAS  Google Scholar 

  55. Y.Z. An, G.E. Schramm, M.T. Berry, Ligand-to-metal charge-transfer quenching of the Eu3+ (5D1) state in europium-doped tris(2,2,6,6-tetramethyl-3,5-heptanedionato) gadolinium (III). J. Lumin. 97, 7–12 (2002)

    Article  CAS  Google Scholar 

  56. F. Zhang, J. Xie, G. Li, W. Zhang, Y. Wang, Y. Huang, Y. Tao, Cation composition sensitive visible quantum cutting behavior of high efficiency green phosphors Ca9Ln(PO4)7:Tb3+ (Ln = Y, La, Gd). J. Mater. Chem. C 5, 872–881 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Project was supported by the National Natural Science Foundation of China (Grant No. 51162021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufeng Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Wang, X., Zhang, K. et al. Intercalation of cytosine into Eu3+-doped hydrocalumite and their fluorescent responses. J IRAN CHEM SOC 14, 2417–2426 (2017). https://doi.org/10.1007/s13738-017-1176-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-017-1176-z

Keywords

Navigation