Skip to main content
Log in

Application of multivariate optimization method in nanomolar simultaneous determination of morphine and codeine in the presence of uric acid using a glassy carbon electrode modified with a hydroxyapatite-Fe3O4 nanoparticle/multiwalled carbon nanotubes composite

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The electrochemical oxidation of morphine (MO) and codeine (COD) has been investigated by the application of a novel glassy carbon electrode modified with a hydroxyapatite-Fe3O4 nanoparticles/multiwalled carbon nanotubes composite (HA-FeNPs-MWCNTs/GCE). The modified electrode worked as an efficient sensor for simultaneous determination of MO and COD in the presence of uric acid. Response surface methodology was utilized to optimize the voltammetric response of the modified electrode for the determination of MO and COD. The amount of HA-FeNPs in the modifier matrix (%HA-FeNPs), the solution pH and the accumulation time were chosen as the three important operating factors through the experimental design methodology. The central composite design as a response surface approach was applied for obtaining the optimum conditions leading to maximum oxidation peak currents for MO and COD. The differential pulse voltammetry results showed that the obtained anodic peak currents were linearly proportional to concentration in the range of 0.08–32 µM with a detection limit (S/N = 3.0) of 14 nM for MO and in the range of 0.1–28 µM and with a detection limit of 22 nM for COD. The proposed method was successfully applied to determine these compounds in human urine and blood serum samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Babaei, M. Babazadeh, M. Afrasiabi, Chin. J. Chem. 29, 2157–2164 (2011)

    Article  CAS  Google Scholar 

  2. A. Asghari, S. Kianipour, M. Afrasiabi, M. Rajabi, Sensor Lett. 11, 545–551 (2013)

    Article  CAS  Google Scholar 

  3. D. Lahiri, S. Ghosh, A. Agarwal, Mater. Sci. Eng., C 32, 1727–1758 (2012)

    Article  CAS  Google Scholar 

  4. E. Pujiyanto, A.E. Tontowi, M.W. Wildan, W. Siswomihardjo, Adv. Mater. Res. 445, 463–468 (2012)

    Article  CAS  Google Scholar 

  5. X. Liu, H. Zhu, X. Yang, Talanta 87, 243–248 (2011)

    Article  CAS  Google Scholar 

  6. D. Lu, Y. Zhang, L. Wang, S. Lin, C. Wang, X. Chen, Talanta 88, 181–186 (2012)

    Article  CAS  Google Scholar 

  7. L. Dong, Z. Zhu, Y. Qiu, J. Zhao, Chem. Eng. J. 165, 827–834 (2010)

    Article  CAS  Google Scholar 

  8. Z.P. Yang, X.Y. Gong, C.J. Zhang, Chem. Eng. J. 165, 117–121 (2010)

    Article  CAS  Google Scholar 

  9. Q.C. Meng, M.C. Cepeda, T. Kramer, H. Zou, D.J. Matoka, J. Farrar, J. Chromatogr. B 742, 115–123 (2000)

    Article  CAS  Google Scholar 

  10. H.J. Leis, G. Fauler, G. Raspotnig, W. Windischhofer, J. Chromatogr. B 744, 113–119 (2000)

    Article  CAS  Google Scholar 

  11. A.D. Nagy, L. Rivier, C. Giroud, M. Augsburger, P. Mangin, J. Chromatogr. A 854, 109–118 (1999)

    Article  Google Scholar 

  12. A.B. Wey, W. Thormann, J. Chromatogr. A 916, 225–238 (2001)

    Article  CAS  Google Scholar 

  13. X.X. Zhang, J. Li, J. Gao, L. Sun, W.B. Chang, J. Chromatogr. A 895, 1–7 (2000)

    Article  CAS  Google Scholar 

  14. A. Babaei, M. Babazadeh, H.R. Momeni, Int. J. Electrochem. Sci. 6, 1382–1395 (2011)

    CAS  Google Scholar 

  15. N.F. Atta, A. Galal, A.A. Wassel, A.H. Ibrahim, Int. J. Electrochem. Sci. 7, 10501–10518 (2012)

    CAS  Google Scholar 

  16. M. Tao, F. Xu, Y. Li, Q. Xu, Y. Chang, Z. Wu, Y. Yang, Bull. Korean Chem. Soc. 31, 1968–1972 (2010)

    Article  CAS  Google Scholar 

  17. W.M. Yeh, K.C. Ho, Anal. Chim. Acta 542, 76–82 (2005)

    Article  CAS  Google Scholar 

  18. K.C. Ho, C.Y. Chen, H.C. Hsu, L.C. Chen, S.C. Shiesh, X.Z. Lin, Biosens. Bioelectron. 20, 3–8 (2004)

    Article  CAS  Google Scholar 

  19. F. Xu, M.N. Gao, L. Wang, T.S. Zhou, L.T. Jin, J.Y. Jin, Talanta 58, 427–432 (2002)

    Article  CAS  Google Scholar 

  20. F. Li, J. Song, D. Gao, Q. Zhang, D. Han, L. Niu, Talanta 79, 845–850 (2009)

    Article  CAS  Google Scholar 

  21. A. Niazi, J. Ghasemi, M. Zendehdel, Talanta 74, 247–254 (2007)

    Article  CAS  Google Scholar 

  22. A. Salimi, R. Hallaj, G.R. Khayatian, Electroanalysis 17, 873–879 (2005)

    Article  CAS  Google Scholar 

  23. M.A.H. Elsayed, S.F. Belal, A.F.M. Elwalily, H. Abdine, Analyst 104, 620–625 (1979)

    Article  CAS  Google Scholar 

  24. N.W. Barnett, T.A. Bowser, R.D. Gerardi, B. Smith, Anal. Chim. Acta 318, 309–317 (1996)

    Article  CAS  Google Scholar 

  25. T. Berg, E. Lundanes, A.S. Christophersen, D.H. Strand, J. Chromatogr. B 877, 421–432 (2009)

    Article  CAS  Google Scholar 

  26. R. Meatherall, J. Anal. Toxicol. 23, 177–186 (1999)

    Article  CAS  Google Scholar 

  27. A. Babaei, A. Dehdashti, M. Afrasiabi, M. Babazadeh, M. Farshbaf, F. Bamdad, Sensor Lett. 10, 1038–1045 (2012)

    Google Scholar 

  28. J.-M. Zen, M.-R. Chang, H.-H. Chung, Y. Shih, Electroanalysis 10, 536–540 (1998)

    Article  CAS  Google Scholar 

  29. Y. Shih, J.-M. Zen, H.-H. Yang, J. Pharm. Biomed. Anal. 29, 827–833 (2002)

    Article  CAS  Google Scholar 

  30. M.H. Pournaghi-Azar, A. Saadatirad, Electroanalysis 22, 1592–1598 (2010)

    CAS  Google Scholar 

  31. Substance Abuse and Mental Health Services Administration, Fed. Reg. 59(110), 29921–29922 (1994)

  32. J.H. Autry, III. Notice to all DHHS/NIDA Certified Laboratories, United States of America Department of Health and Human Services, Public Health Service, Alcohol, Drug Abuse and Mental Health Administration, Rockville, MD, December 19 (1990)

  33. R.B. Raffa, Am. J. Med. 101, 40S–46S (1996)

    Article  CAS  Google Scholar 

  34. M. Mátyus, Gy Kocsis, O. Boldis, G. Karvaly, E. Magyar, J. Fűrész, A. Gachályi, Acta Chromatogr. 24, 351–365 (2012)

    Article  Google Scholar 

  35. R. Coles, M.M. Kushnir, G.J. Nelson, G.A. McMillin, F.M. Urry, J. Anal. Toxicol. 31, 1–14 (2007)

    Article  CAS  Google Scholar 

  36. L.A. Broussard, L.C. Presley, T. Pittman, R. Clouette, G.H. Wimbish, Clin. Chem. 43, 1029–1032 (1997)

    CAS  Google Scholar 

  37. S. Chericoni, F. Stefanelli, V. Iannella, M. Giusiani, J. Chromatogr. B 949–950, 127–132 (2014)

    Article  Google Scholar 

  38. J. Zolgharnein, T. Shariatmanesh, A. Babaei, Sens. Actuators B 186, 536–544 (2013)

    Article  CAS  Google Scholar 

  39. J. Zhou, X. Yu, C. Ding, Z. Wang, Q. Zhou, H. Pao, W. Cai, J. Environ. Sci. 23, 22–30 (2011)

    Article  CAS  Google Scholar 

  40. D.C. Montgomery, Design and Analysis of Experiments (Wiley, New York, 2001)

    Google Scholar 

  41. T.P. Ryan, Modern Experimental Design (Wiley, Hoboken, 2007)

    Book  Google Scholar 

  42. J. Zolgharnein, A. Shahmoradi, J.B. Ghasemi, J. Chemom. 27, 12–20 (2013)

    Article  CAS  Google Scholar 

  43. A. Safavi, S. Momeni, J. Hazard. Mater. 201–202, 125–131 (2012)

    Article  Google Scholar 

  44. A.J. Bard, L.R. Faulkner, Electrochemical Methods, Fundamentals and Applications, 2nd edn. (Wiley, New York, 2001)

    Google Scholar 

  45. L. Chen, J.M. Mccrate, J.C.-M. Lee, H. Li, Nanotechnology 22, 105708 (2011)

    Article  Google Scholar 

  46. M. Jalali-Heravi, H. Parastar, H. Ebrahimi-Najafabadi, J. Chromatogr. A 1216, 6088–6097 (2009)

    Article  CAS  Google Scholar 

  47. A.A. Ensafi, E. Heydari-Bafrooei, B. Rezaei, Biosens. Bioelectron. 41, 627–633 (2013)

    Article  CAS  Google Scholar 

  48. M.H. Pournaghi-Azar, A. Saadatirad, J. Electroanal. Chem. 624, 293–298 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the research council of Arak University for providing financial support (No. 92.9829) for this work. Special thanks to Professor A. J. McQuillan from Otago University in New Zealand for his valuable comments on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Babaei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 730 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babaei, A., Afrasiabi, M. & Shabanian, M. Application of multivariate optimization method in nanomolar simultaneous determination of morphine and codeine in the presence of uric acid using a glassy carbon electrode modified with a hydroxyapatite-Fe3O4 nanoparticle/multiwalled carbon nanotubes composite. J IRAN CHEM SOC 14, 2305–2317 (2017). https://doi.org/10.1007/s13738-017-1167-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-017-1167-0

Keywords

Navigation