Skip to main content

A green, simple, catalyst-free, and efficient method for electro-organic synthesis of new benzofuran derivatives

Abstract

In this work, the electrochemical oxidation of catechols 1a and 1b was studied in the presence of pyrazolidine-3,5-dione (3a), as a nucleophile, in a mixture of ethanol and a phosphate buffer solution (0.1 M, pH 7), as a green medium, using the cyclic voltammetry and controlled-potential coulometry techniques. The results obtained indicated that the oxidized forms of these catechols (2a and 2b) participated in the Michael addition reactions with pyrazolidine-3,5-dione (3a), and converted, via an ECEC mechanism, to their corresponding benzofurans (7a and 7b). In this work, some new benzofuran derivatives were synthesized with good yields and high purities using a facile, one-pot, and environmentally friendly electrochemical method in the absence of any chemical catalyst, toxic solvent, and hard conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2

References

  1. 1.

    M.A. Chamjangali, M. Bakherad, M. Ameri, Electrochemical oxidation of catechol derivatives in the presence of 3-acetyldihydro-2 (3H)-furanone: efficient and green method for synthesis of new butyrolactone derivatives. Monatsh. Chem. 146, 111–117 (2015)

    Article  Google Scholar 

  2. 2.

    T. Shono, Electroorganic chemistry in organic synthesis. Tetrahedron 40, 811–850 (1984)

    CAS  Article  Google Scholar 

  3. 3.

    R.S. Ward, Lignans, neolignans and related compounds. Nat. Prod. Rep. 14, 43–74 (1997)

    CAS  Article  Google Scholar 

  4. 4.

    M. Halabalaki, N. Aligiannis, Z. Papoutsi, S. Mitakou, P. Moutsatsou, C. Sekeris, A.-L. Skaltsounis, Three new arylobenzofurans from O n obrychis e benoides and evaluation of their binding affinity for the estrogen receptor. J. Nat. Prod. 63, 1672–1674 (2000)

    CAS  Article  Google Scholar 

  5. 5.

    E.V. Angerer, C. Biberger, S. Leichtl, Studies on heterocyde based pure estrogen antagonistsa. Ann. N.Y. Acad. Sci. 761, 176–191 (1995)

    Article  Google Scholar 

  6. 6.

    C.C. Teo, O.L. Kon, K.Y. Sim, S.C. Ng, Synthesis of 2-(p-chlorobenzyl)-3-aryl-6-methoxybenzofurans as selective ligands for antiestrogen-binding sites. Effects on cell proliferation and cholesterol synthesis. J. Med. Chem. 35, 1330–1339 (1992)

    CAS  Article  Google Scholar 

  7. 7.

    G.A. Gfesser, R. Faghih, Y.L. Bennani, M.P. Curtis, T.A. Esbenshade, A.A. Hancock, M.D. Cowart, Structure–activity relationships of arylbenzofuran H 3 receptor antagonists. Bioorg. Med. Chem. Lett. 15, 2559–2563 (2005)

    CAS  Article  Google Scholar 

  8. 8.

    M. Cowart, J.K. Pratt, A.O. Stewart, Y.L. Bennani, T.A. Esbenshade, A.A. Hancock, A new class of potent non-imidazole H 3 antagonists: 2-aminoethylbenzofurans. Bioorg. Med. Chem. Lett. 14, 689–693 (2004)

    CAS  Article  Google Scholar 

  9. 9.

    C. Hocke, O. Prante, S. Löber, H. Hübner, P. Gmeiner, T. Kuwert, Synthesis and radioiodination of selective ligands for the dopamine D3 receptor subtype. Bioorg. Med. Chem. Lett. 14, 3963–3966 (2004)

    CAS  Article  Google Scholar 

  10. 10.

    Y. Hu, J.S. Xiang, M.J. DiGrandi, X. Du, M. Ipek, L.M. Laakso, J. Li, W. Li, T.S. Rush, J. Schmid, Potent, selective, and orally bioavailable matrix metalloproteinase-13 inhibitors for the treatment of osteoarthritis. Biorg. Med. Chem. 13, 6629–6644 (2005)

    CAS  Article  Google Scholar 

  11. 11.

    M.W. Khan, M.J. Alam, M. Rashid, R. Chowdhury, A new structural alternative in benzo [b] furans for antimicrobial activity. Biorg. Med. Chem. 13, 4796–4805 (2005)

    CAS  Article  Google Scholar 

  12. 12.

    O. Oter, K. Ertekin, C. Kirilmis, M. Koca, M. Ahmedzade, Characterization of a newly synthesized fluorescent benzofuran derivative and usage as a selective fiber optic sensor for Fe(III). Sensor. Actuat. B Chem. 122, 450–456 (2007)

    CAS  Article  Google Scholar 

  13. 13.

    F. Karatas, M. Koca, H. Kara, S. Servi, Synthesis and oxidant properties of novel (5-bromobenzofuran-2-yl)(3-methyl-3-mesitylcyclobutyl) ketonethiosemicarbazone. Eur. J. Med. Chem. 41, 664–669 (2006)

    CAS  Article  Google Scholar 

  14. 14.

    J. Habermann, S.V. Ley, R. Smits, Three-step synthesis of an array of substituted benzofurans using polymer-supported reagents. J. Chem. Soc. Perkin Trans. 1, 2421–2423 (1999)

    Article  Google Scholar 

  15. 15.

    D.R. Howlett, A.E. Perry, F. Godfrey, J.E. Swatton, K.H. Jennings, C. Spitzfaden, H. Wadsworth, R.E. Markwell, Inhibition of fibril formation in β-amyloid peptide by a novel series of benzofurans. Biochem. J. 340, 283–289 (1999)

    CAS  Article  Google Scholar 

  16. 16.

    J. Hardy, D. Allsop, Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol. Sci. 12, 383–388 (1991)

    CAS  Article  Google Scholar 

  17. 17.

    M. Mazloum-Ardakani, A. Khoshroo, D. Nematollahi, B.-F. Mirjalili, Electrochemical study of catechol derivatives in the presence of β-diketones: synthesis of benzofuran derivatives. J. Electrochem. Soc. 159, H912–H917 (2012)

    CAS  Article  Google Scholar 

  18. 18.

    D. Nematollahi, M. Rafiee, L. Fotouhi, Mechanistic study of homogeneous reactions coupled with electrochemical oxidation of catechols. J. Iran. Chem. Soc. 6, 448–476 (2009)

    CAS  Article  Google Scholar 

  19. 19.

    Z. Grujić, I. Tabaković, M. Trkovnik, Electrochemical syntheses of heterocyclic compounds-IV. Syntheses with nascent quinones. Tetrahedron Lett. 17, 4823–4824 (1976)

    Article  Google Scholar 

  20. 20.

    L. Papouchado, G. Petrie, R. Adams, Anodic oxidation pathways of phenolic compounds: part I. Anodic hydroxylation reactions. J. Electroanal. Chem. Interfacial Electrochem. 38, 389–395 (1972)

    CAS  Article  Google Scholar 

  21. 21.

    D. Nematollahi, M. Rafiee, A. Samadi-Maybodi, Mechanistic study of electrochemical oxidation of 4-tert-butylcatechol: a facile electrochemical method for the synthesis of new trimer of 4-tert-butylcatechol. Electrochim. Acta 49, 2495–2502 (2004)

    CAS  Article  Google Scholar 

  22. 22.

    M. Ameri, A. Asghari, A. Amoozadeh, M. Bakherad, D. Nematollahi, Green and highly efficient synthesis of new bis-benzofurans via electrochemical methods under ECECCC mechanism. J. Electrochem. Soc. 161, G75–G80 (2014)

    CAS  Article  Google Scholar 

  23. 23.

    S. Golabi, D. Nematollahi, Electrochemical study of 3, 4-dihydroxybenzoic acid and 4-tert-butylcatechol in the presence of 4-hydroxycoumarin application to the electro-organic synthesis of coumestan derivatives. J. Electroanal. Chem. 430, 141–146 (1997)

    CAS  Article  Google Scholar 

  24. 24.

    D. Nematollahi, A. Amani, E. Tammari, Electrosynthesis of symmetric and highly conjugated benzofuran via a unique ECECCC electrochemical mechanism: evidence for predominance of electrochemical oxidation versus intramolecular cyclization. J. Org. Chem. 72, 3646–3651 (2007)

    CAS  Article  Google Scholar 

  25. 25.

    M.D. Ryan, A. Yueh, W.Y. Chen, The electrochemical oxidation of substituted catechols. J. Electrochem. Soc. 127, 1489–1495 (1980)

    CAS  Article  Google Scholar 

Download references

Acknowledgement

The authors wish to thank the Semnan University Research Council for the financial support of this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alireza Asghari.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Asghari, A., Gholami, A., Bakherad, M. et al. A green, simple, catalyst-free, and efficient method for electro-organic synthesis of new benzofuran derivatives. J IRAN CHEM SOC 14, 2127–2133 (2017). https://doi.org/10.1007/s13738-017-1149-2

Download citation

Keywords

  • Electro-oxidation
  • Catechol
  • Benzofurans
  • Environmentally friendly
  • ECEC mechanism