Skip to main content

Bioinspired synthesis, characterization and antifungal activity of enzyme-mediated gold nanoparticles using a fungal oxidoreductase

Abstract

The development of efficient cell-free systems of nanoparticle synthesis using microbial enzymes is a growing field of biological and green chemistry for the supportable improvement in nano-biotechnology. In the present study, we established a cell-free system for producing gold nanoparticles (AuNPs) using a fungal oxidoreductase named sulfite oxidoreductase purified to homogeneity from Fusarium oxysporum. The enzyme was purified by ultrafiltration followed by anion exchange chromatography on DEAE Sephadex A-50 gel, and its molecular weight was determined by gel filtration chromatography on Sephacryl S-300 gel. The purified enzyme had a molecular weight of 346 kDa. It was composed of three subunits of 176, 94 and 76 kDa. Purified enzyme was successfully used for production of gold nanoparticles in a cell-free system. Synthesized gold nanoparticles showed the highest absorbance at 520 nm wavelength as shown by UV–visible spectroscopy. They were spherical in shape with an average size of 20 nm as determined by scanning and transmission electron microscopy and dynamic light scattering. Assessment of the antifungal properties of synthesized nanoparticles by disk diffusion method indicated a potent growth inhibitory activity against all tested human pathogenic yeasts and molds by inhibition zones ranged from 10 to 18 mm. Taken together, our enzymatically established method of nanoparticle synthesis using a purified sulfite oxidoreductase of F. oxysporum can be considered as an efficient tool for generating harmless bioactive gold nanoparticles with potential applications in biology, medicine and industry.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. A.K. Jha, K. Prasad, K. Prasad, A.R. Kulkarni, Colloids Surf. B 73, 219–223 (2009)

    CAS  Article  Google Scholar 

  2. D.N. Castillo-López, U. Pal, J. Nanopart. Res. 16, 1–15 (2014)

    Article  Google Scholar 

  3. S. Kondath, B.S. Raghavan, R. Anantanarayanan, R. Rajaram, Chem. Biol. Interact. 224, 78–88 (2014)

    CAS  Article  Google Scholar 

  4. R. Sanghi, P. Verma, Adv. Mater. Lett. 1, 193–199 (2010)

    Article  Google Scholar 

  5. X. Xie, W. Xu, X. Liu, Acc. Chem. Res. 45, 1511–1520 (2012)

    CAS  Article  Google Scholar 

  6. N. Muniyappan, N.S. Nagarajan, Proc. Biochem. 49, 1054–1061 (2014)

    CAS  Article  Google Scholar 

  7. K.N. Thakkar, S.S. Mhatre, R.Y. Parikh, Nanomedicine 6, 257–262 (2010)

    CAS  Google Scholar 

  8. T.M. Muhsin, A.K. Hachim, World **J. Microbiol. Biotechnol. 30, 2081–2090 (2014)

    CAS  Article  Google Scholar 

  9. E. Castro-Longoria, A.R. Vilchis-Nestor, M. Avalos-Borja, Colloids Surf. B 83, 42–48 (2011)

    CAS  Article  Google Scholar 

  10. A. Mishra, S.K. Tripathy, R. Wahab, S.H. Jeong, I. Hwang, Y.B. Yang, S.I. Yun, Appl. Microbiol. Biotechnol. 92, 617–630 (2011)

    CAS  Article  Google Scholar 

  11. N. Soni, S. Prakash, Parasitol. Res. 110, 175–184 (2012)

    Article  Google Scholar 

  12. L. Pereira, N. Dias, J. Carvalho, S. Fernandes, C. Santos, N. Lima, J. Appl. Microbiol. 117, 1601–1613 (2014)

    CAS  Article  Google Scholar 

  13. H. Hiramatsu, F.E. Osterloh, Chem. Mater. 16, 2509–2511 (2004)

    CAS  Article  Google Scholar 

  14. Y. Lee, J.R. Choi, K.J. Lee, N.E. Stott, D. Kim, Nanotechnology 19, 415604 (2008)

    Article  Google Scholar 

  15. L. Polavarapu, Q.H. Xu, Nanotechnology 20, 185606 (2009)

    Article  Google Scholar 

  16. J.R. Nakkala, R. Mata, E. Bhagat, S.R. Sadras, J. Nanopart. Res. 17, 1–15 (2015)

    CAS  Article  Google Scholar 

  17. J.Y. Song, B.S. Kim, Bioprocess Biosyst. Eng. 44, 1133–1138 (2009)

    CAS  Google Scholar 

  18. P. Anastas, N. Eghbali, Chem. Soc. Rev. 39, 301–312 (2010)

    CAS  Article  Google Scholar 

  19. R.K. Sharma, S. Gulati, S. Mehta, J. Chem. Educ. 89, 1316–1318 (2012)

    CAS  Article  Google Scholar 

  20. A. Gade, A. Ingle, C. Whiteley, M. Rai, Biotechnol. Lett. 32, 593–600 (2010)

    CAS  Article  Google Scholar 

  21. P. Swain, S.K. Nayak, A. Sasmal, T. Behera, S.K. Barik, S.K. Swain, P. Jayasankar, World J. Microbiol. Biotechnol. 30, 2491–2502 (2014)

    CAS  Article  Google Scholar 

  22. H.M. Azzazy, M.M. Mansour, T.M. Samir, R. Franco, Clin. Chem. Lab. Med. 50, 193–209 (2012)

    CAS  Article  Google Scholar 

  23. S.A. Kumar, M.K. Abyaneh, S.W. Gosavi, S.K. Kulkarni, A. Ahmad, M.I. Khan, Biotechnol. Appl. Biochem. 47, 191–195 (2007)

    CAS  Article  Google Scholar 

  24. T.L. Riddin, Y. Govender, M. Gericke, C.G. Whiteley, Enzyme Microb. Technol. 45, 267–273 (2009)

    CAS  Article  Google Scholar 

  25. M. Gholami-Shabani, A. Akbarzadeh, D. Norouzian, A. Amini, Z. Gholami-Shabani, A. Imani, M. Chiani, G. Riazi, M. Shams-Ghahfarokhi, M. Razzaghi-Abyaneh, Appl. Biochem. Biotechnol. 172, 4084–4098 (2014)

    CAS  Article  Google Scholar 

  26. T. Schüler, A. Steinbrück, G. Festag, R. Möller, W. Fritzsche, J. Nanopart. Res. 11, 939–946 (2009)

    Article  Google Scholar 

  27. Y. Govender, T.L. Riddin, M. Gericke, C.G. Whiteley, J. Nanopart. Res. 12, 261–271 (2010)

    CAS  Article  Google Scholar 

  28. L. Liu, T. Liu, M. Tade, S. Wang, X. Li, S. Liu, Enzyme Microb. Technol. 67, 53–58 (2014)

    CAS  Article  Google Scholar 

  29. J. Huang, L. Lin, D. Sun, H. Chen, D. Yang, Q. Li, Chem. Soc. Rev. 44, 6330–6374 (2015)

    CAS  Article  Google Scholar 

  30. M. Gholami-Shabani, A. Imani, M. Razzaghi-Abyaneh, G. Riazi, M. Chian, A. Akbarzadeh, New Cell. Mol. Biotechnol. J. 2, 27–33 (2012)

    Google Scholar 

  31. A. Yoshimoto, R. Sato, Biochim. Biophys. Acta (BBA) Bioenerg. 53, 555–575 (1968)

    Article  Google Scholar 

  32. S.T. Jiang, M.L. Ho, S.H. Jiang, H.C. Chen, J. Food Sci. 63, 777–781 (1998)

    CAS  Article  Google Scholar 

  33. M. Gholami-Shabani, M. Shams-Ghahfarokhi, Z. Gholami-Shabani, A. Akbarzadeh, G. Riazi, S. Ajdari, A. Amani, M. Razzaghi-Abyaneh, Proc. Biochem. 50, 1076–1085 (2015)

    CAS  Article  Google Scholar 

  34. U.K. Laemmli, Nature 227, 680–685 (1970)

    CAS  Article  Google Scholar 

  35. S. Takahashi, W.C. Yip, G. Tamura, Biosci. Biotechnol. Biochem. 61, 1486–1490 (1997)

    CAS  Article  Google Scholar 

  36. S. Iravani, Green Chem. 13, 2638–2650 (2011)

    CAS  Article  Google Scholar 

  37. H. Duan, D. Wang, Y. Li, Chem. Soc. Rev. 44, 5778–5792 (2015)

    CAS  Article  Google Scholar 

  38. R. Vaidyanathan, S. Gopalram, K. Kalishwaralal, V. Deepak, S.R. Pandian, S. Gurunathan, Colloids Surf. B 75, 335–341 (2010)

    CAS  Article  Google Scholar 

  39. P. Mukherjee, S. Senapati, D. Mandal, A. Ahmad, M.I. Khan, R. Kumar, M. Sastry, Chem. Biol. Chem. 3, 461–463 (2002)

    CAS  Article  Google Scholar 

  40. Y. Govender, T. Riddin, M. Gericke, C.G. Whiteley, Biotechnol. Lett. 31, 95–100 (2009)

    CAS  Article  Google Scholar 

  41. R. Sanghi, P. Verma, S. Puri, Adv. Chem. Eng. Sci. 1, 154 (2011)

    CAS  Article  Google Scholar 

  42. S.A. Khan, A. Ahmad, RSC Adv. 4, 7729–7734 (2014)

    CAS  Article  Google Scholar 

  43. W.S. Lin, C.N. Lok, C.M. Che, Chem. Sci. 5, 3144–3150 (2014)

    CAS  Article  Google Scholar 

  44. R. Ahmad, M. Mohsin, T. Ahmad, M. Sardar, J. Hazard. Mater. 283, 171–177 (2015)

    CAS  Article  Google Scholar 

  45. F. Xu, Ind. Biotechnol. 1, 38–50 (2005)

    CAS  Article  Google Scholar 

  46. A.N. Mabbett, P. Yong, J.P.G. Farr, L.E. Macaskie, Biotechnol. Bioeng. 87, 104–109 (2004)

    CAS  Article  Google Scholar 

  47. S.K. Das, C. Dickinson, F. Lafir, D.F. Brougham, E. Marsili, Green Chem. 14, 1322–1334 (2012)

    CAS  Article  Google Scholar 

  48. E.P. Vetchinkina, E.A. Loshchinina, A.M. Burov, L.A. Dykman, V.E. Nikitina, J. Biotechnol. 82, 37–45 (2014)

    Article  Google Scholar 

  49. P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S.R. Sainkar, M.I. Khan, R. Parishcha, P.V. Ajaykumar, M. Alam, R. Kumar, M. Sastry, Nano Lett. 1, 515–519 (2001)

    CAS  Article  Google Scholar 

  50. A. Ahmad, S. Senapati, M.I. Khan, R. Kumar, M. Sastry, Langmuir 19, 3550–3553 (2003)

    CAS  Article  Google Scholar 

  51. N. Duran, P.D. Marcato, O.L. Alves, G. DeSouza, E. Esposito, J. Nanobiotechnol. 3, 1–8 (2005)

    Article  Google Scholar 

  52. S. Basavaraja, S.D. Balaji, A. Lagashetty, A.H. Rajasab, A. Venketaraman, Mater. Res. Bull. 43, 1164–1170 (2008)

    CAS  Article  Google Scholar 

  53. L.M. Rӧsken, S. Kӧrsten, C.B. Fischer, A. Schӧnleber, S. van Smaalen, S. Geimer, S. Wehner, J. Nanopart. Res. 16, 2370 (2014)

    Article  Google Scholar 

  54. M. Misawa, J. Takahashi, Nanomed. Nanotechnol. Biol. Med. 7, 604–614 (2011)

    CAS  Article  Google Scholar 

  55. P.P. Fu, Q. Xia, H.M. Hwang, P.C. Ray, H. Yu, J. Food Drug Anal. 22, 64–75 (2014)

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported financially by the Pasteur Institute of Iran (Project No. 766).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Razzaghi-Abyaneh.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gholami-Shabani, M., Imani, A., Shams-Ghahfarokhi, M. et al. Bioinspired synthesis, characterization and antifungal activity of enzyme-mediated gold nanoparticles using a fungal oxidoreductase. J IRAN CHEM SOC 13, 2059–2068 (2016). https://doi.org/10.1007/s13738-016-0923-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-016-0923-x

Keywords

  • Gold nanoparticles
  • Sulfite oxidoreductase
  • Fusarium oxysporum
  • Green synthesis
  • Electron microscopy
  • Antifungal activity