Skip to main content
Log in

Optical, magnetic and photocatalytic properties of magnetically separable Fe3O4-doped ZnO and pristine ZnO nanospheres

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

This work focussed on the optical, magnetic and photocatalytic properties of sol–gel-synthesized Fe3O4-doped ZnO nanospheres and was compared with pristine ZnO nanospheres. The crystalline phase of Fe3O4-doped ZnO nanospheres was studied with X-ray diffraction analysis and was well matched with standard pattern. Surface morphology was studied with HR-SEM images and EDAX spectrum. Furthermore, elemental mapping analysis was carried out to confirm the presence of Fe3O4 phase in Fe3O4-doped ZnO nanospheres. FT-Raman spectral studies show that a strong intense peak at 670 cm−1 indicates the presence of Fe3O4 in Fe3O4-doped ZnO nanospheres. The mean crystallite size of Fe3O4-doped ZnO nanospheres was 34 nm as calculated by Debye–Scherrer’s formula which confirmed with HR-TEM image. The SAED pattern shows the presence of (100), (101), (102) and (202) of ZnO phase and (400) of Fe3O4 phase, confirming the crystalline nature of Fe3O4-doped ZnO nanospheres. The vibrating sample magnetometer (VSM) result shows that Fe3O4-doped ZnO nanospheres possess superparamagnetic nature and the composite nanospheres are magnetically separable. The optical properties have been studied by diffuse reflectance spectroscopy and time-resolved photoluminescence spectra. Implantation of Fe3O4 in ZnO nanospheres modifies the UV absorption edge, and it displays near-band gap emission and deep-level emission. The photocatalytic activity of Fe3O4-doped ZnO nanospheres studied against rhodamine B dye is found higher than that of pristine ZnO nanospheres which shows that Fe3O4-doped ZnO nanospheres are a promising photocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. T.P. Chou, Q.F. Zhang, G.Z. Cao, Effects of dye loading conditions on the energy conversion efficiency of ZnO and TiO2 dye-sensitized solar cells. J. Phys. Chem. C 111, 18804–18811 (2007)

    Article  CAS  Google Scholar 

  2. V.M. Guerin, C. Magne, T. Pauporte, T. Le Bahers, J. Rathousky, Electrodeposited nanoporous versus nanoparticulate ZnO films of similar roughness for dye-sensitized solar cell applications. ACS Appl. Mater. Interfaces 2, 3677–3685 (2010)

    Article  CAS  Google Scholar 

  3. K. Keis, C. Bauer, G. Boschloo, A. Hagfeldt, K. Westermark, H. Rensmo, H. Siegbahn, Nanostructured ZnO electrodes for dye-sensitized solar cell applications. J. Photochem. Photobiol. A Chem. 148, 57–64 (2002)

    Article  CAS  Google Scholar 

  4. D. Wei, Dye sensitized solar cells. Int. J. Mol. Sci. 11, 1103–1113 (2010)

    Article  CAS  Google Scholar 

  5. Wu Wei, Shaofeng Zhang, Xiangheng Xiao, Juan Zhou, Feng Ren, Lingling Sun, Changzhong Jiang, Controllable synthesis, magnetic properties, and enhanced photocatalytic activity of spindlelike mesoporous α-Fe2O3/ZnO core–shell heterostructures. ACS Appl. Mater. Interfaces 4, 3602–3609 (2012)

    Article  Google Scholar 

  6. Wu Wei, Wu Zhaohui, Yu. Taekyung, Changzhong Jiang, Woo-Sik Kim, Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater. 16, 023501 (2015)

    Article  Google Scholar 

  7. Wu Wei, Changzhong Jiang, Vellaisamy A.L. Roy, Recent progress in magnetic iron oxide-semiconductor composite nanomaterials as promising photocatalysts. Nanoscale (2014). doi:10.1039/C4NR04244A

    Google Scholar 

  8. H. Faber, M. Klaumunzer, M. Voigt, D. Galli, B.F. Vieweg, W. Peukert, E. Spiecker, M. Halik, Morphological impact of zinc oxide layers on the device performance in thin-film transistors. Nanoscale 3, 897–899 (2011)

    Article  CAS  Google Scholar 

  9. E.S. Ilin, S. Marre, V. Jubera, C. Aymonier, Continuous supercritical synthesis of high quality UV-emitting ZnO nanocrystals for optochemical applications. J. Mater. Chem. C 1, 5058–5063 (2013)

    Article  CAS  Google Scholar 

  10. J. Jayabharathi, C. Karunakaran, K. Jayamoorthy, P. Vinayagamoorthy, Benzimidazole based Ir(III) picolinate complexes as emitting materials and the fluorescent behavior of benzimidazole bound to Mn–TiO2@ ZnO core/shell nanospheres. Mater. Express 4(4), 279–292 (2014)

    Article  CAS  Google Scholar 

  11. P. Saravanan, K. Jayamoorthy, S.A. Kumar, Switch-On fluorescence and photo-induced electron transfer of 3-aminopropyl triethoxysilane to ZnO: dual applications in sensors and antibacterial activity. Sens. Actuators B Chem. 221, 784–791 (2015)

    Article  CAS  Google Scholar 

  12. C. Karunakaran, J. Jayabharathi, K. Jayamoorthy, Benzimidazole: dramatic luminescence turn-on by ZnO nanocrystals. Measurement 46(10), 3883–3886 (2013)

    Article  Google Scholar 

  13. V. Saasa, M. Mokwena, B. Dhonge, E. Manikandan, J.V. Kennedy, P.P. Murmu, J. Dewar, R. Erasmus, M.F. Whaley, E. Mukwevho, B. Mwakikunga, Optical and structural properties of multi-wall-carbon-nanotube-modified ZnO synthesised at varying substrate temperatures for highly efficient light sensing devices. Sens. Transducers 195(12), 9–17 (2015)

    CAS  Google Scholar 

  14. B. Sathyaseelan, E. Manikandan, K. Sivakumar, J.V. Kennedy, M. Maaza, Enhanced visible photoluminescent and structural properties of ZnO/KIT-6 nanoporous materials for white light emitting diode (w-LED) application. J. Alloys Compd. 651, 479–482 (2015)

    Article  CAS  Google Scholar 

  15. P.P. Murmu, J.V. Kennedy, Structural and magnetic properties of heavily doped Co into ZnO single crystals. Int. J. ChemTech Res. 7(3), 1651–1655 (2015)

    Google Scholar 

  16. Wu Zhaohui, Shuanglei Yang, Wu Wei, Shape control of inorganic nanoparticles from solution. Nanoscale (2015). doi:10.1039/C5NR07681A

    Google Scholar 

  17. C. Karunakaran, J. Jayabharathi, K. Jayamoorthy, P. Vinayagamoorthy, Inhibition of fluorescence enhancement of benzimidazole derivative on doping ZnO with Cu and Ag. J. Photochem. Photobiol. A 247, 16–23 (2012)

    Article  CAS  Google Scholar 

  18. C. Karunakaran, J. Jayabharathi, K. Jayamoorthy, K.B. Devi, Photosensitization of imidazole derivative by ZnO nanoparticle. J. Fluoresc. 22, 1047–1053 (2012)

    Article  CAS  Google Scholar 

  19. J. Jayabharathi, K. Jayamoorthy, Sensing nanoparticulate ZnO with benzimidazole derivative by fluorescence. Key Eng. Mater. 543, 64–67 (2013)

    Google Scholar 

  20. D. Jing, L. Guo, L. Zhao, X. Zhang, H. Liu, M. Li, S. Shen, G. Liu, X. Hu, X. Zhang, K. Zhang, L. Ma, P. Guo, Efficient solar hydrogen production by photocatalytic water splitting: from fundamental study to pilot demonstration. Int. J. Hydrogen Energy 35, 7087–7097 (2010)

    Article  CAS  Google Scholar 

  21. Y. Li, W. Xie, X. Hu, G. Shen, X. Zhou, Y. Xiang, X. Zhao, P. Fang, Comparison of dye photodegradation and its coupling with light-to-electricity conversion over TiO2 and ZnO. Langmuir 26, 591–597 (2010)

    Article  Google Scholar 

  22. B. Subash, B. Krishnakumar, M. Swaminathan, M. Shanthi, Highly efficient, solar active, and reusable photocatalyst: Zr-loaded Ag–ZnO for reactive red 120 dye degradation with synergistic effect and dye-sensitized mechanism. Langmuir 29(3), 939–949 (2013)

    Article  CAS  Google Scholar 

  23. C. Karunakaran, P. Vinayagamoorthy, J. Jayabharathi, Langmuir 30(49), 15031–15039 (2014)

    Article  CAS  Google Scholar 

  24. R.G. Chaudhurai, S. Paria, Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization and applications. Chem. Rev. 112, 2373–2433 (2012)

    Article  Google Scholar 

  25. J. Wan, H. Li, K. Chen, Synthesis and characterization of Fe3O4@ZnO core–shell structured nanoparticles. Mater. Chem. Phys. 114, 30–32 (2009)

    Article  CAS  Google Scholar 

  26. R.Y. Hong, S.Z. Zhang, G.Q. Di, H.Z. Li, Y. Zheng, J. Ding, D.G. Wei, Preparation, characterization and application of Fe3O4/ZnO core/shell magnetic nanoparticles. Mater. Res. Bull. 49, 2457–2468 (2008)

    Article  Google Scholar 

  27. W. Yan, H. Fan, C. Yang, Ultra-fast synthesis and enhanced photocatalytic properties of alpha-Fe2O3/ZnO core–shell structure. Mater. Lett. 65, 1595–1597 (2011)

    Article  CAS  Google Scholar 

  28. L. Jing, Y. Qu, B. Wang, S. Li, B. Jiang, L. Yang, W. Fu, H. Fu, J. Sun, Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol. Energy Mater. Sol. Cells 90, 1773–1787 (2006)

    Article  CAS  Google Scholar 

  29. R. Mariappan, V. Ponnusamy, P. Suresh, Effect of doping concentration on the structural and optical properties of pure and tin doped zinc oxide thin films by nebulizer spray pyrolysis (NSP) technique. Superlattices Microstruct. 52, 500–513 (2012)

    Article  CAS  Google Scholar 

  30. J. Becker, K.R. Raghupathi, J. St. Pierre, D. Zhao, R.T. Koodali, Tuning of the crystallite and particle sizes of ZnO nanocrystalline materials in solvothermal synthesis and their photocatalytic activity for dye degradation. J. Phys. Chem. C 115, 13844–13850 (2011)

    Article  CAS  Google Scholar 

  31. K. Sivaranjani, C.S. Gopinath, Porosity driven photocatalytic activity of wormhole mesoporous TiO2−x N x in direct sunlight. J. Mater. Chem. 21, 2639–2647 (2011)

    Article  CAS  Google Scholar 

  32. X. Wang, Q. Zhang, Q. Wan, G. Dai, C. Zhou, B. Zou, Controllable ZnO architectures by ethanolamine-assisted hydrothermal reaction for enhanced photocatalytic activity. J. Phys. Chem. C 115, 2769–2775 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Suresh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suresh, S., Karthikeyan, S. Optical, magnetic and photocatalytic properties of magnetically separable Fe3O4-doped ZnO and pristine ZnO nanospheres. J IRAN CHEM SOC 13, 2049–2057 (2016). https://doi.org/10.1007/s13738-016-0922-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-016-0922-y

Keywords

Navigation