Skip to main content

The relevance of low-affinity Ca-binding sites to the structure, stability and kinetic properties of thermolysin

Abstract

To clarify the significance of low-affinity Ca-binding sites in thermolysin (TLN), we compared the enzymes having bound and free weak Ca-binding sites. Binding measurements suggested that TLN comprises two strong and two weak Ca-binding sites. Far-UV CD analysis indicated that the weak sites do not affect TLN’s secondary structure. However, a slight local rearrangement due to the weak sites’ occupancy was deduced by the fluorescence measurements. Upon Ca-binding to weak sites, K M and k cat for hydrolysis of 3-(-2-furylacryloyl)-l-glycyl-l-leucine-amide were reduced about 2.8- and 1.8-fold, respectively, and k cat/K M was therefore improved about 1.5-fold. Our modeling studies suggest that the modified kinetic properties may be due to altered hinge angle between N- and C-terminal domains upon Ca-binding to the weak sites. TLN exhibited a higher temperature optimum, remarkable increase in the half-life of thermoinactivation t 1/2 and enhanced remaining activity in the presence of denaturant agents in a Ca-dependent manner. In contrast, organic solvents and pH stabilities were irrelevant to the weak sites. Finally, we conclude that low-affinity sites of TLN may induce subtle changes in the local environment and modulate the enzymatic activity and thermal stability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. B.W. Matthews, Acc. Chem. Res. 21, 333 (1988)

    CAS  Article  Google Scholar 

  2. O.A. Adekoya, I. Sylte, Chem. Biol. Drug Des. 73, 7 (2009)

    CAS  Article  Google Scholar 

  3. V.G. Eijsink, B.W. Matthews, G. Vriend, Protein Sci. 20, 1346 (2011)

    CAS  Article  Google Scholar 

  4. P.M. Colman, J.N. Jansonius, B.W. Matthews, J. Mol. Biol. 70, 701 (1972)

    CAS  Article  Google Scholar 

  5. K. Yasukawa, K. Inouye, Biochim. Biophys. Acta 1774, 1281 (2007)

    CAS  Article  Google Scholar 

  6. N.C.J. Strynadka, M.N.G. James, Curr. Opin. Struct. Biol. 1, 905 (1991)

    CAS  Article  Google Scholar 

  7. G. Voordouw, C. Milo, R.S. Roche, Biochemistry 15, 3717 (1976)

    Article  Google Scholar 

  8. S.M. Asghari, M. Pazhang, S. Ehtesham, H.R. Karbalaei-Heidari, M. Taghdir, M. Sadeghizadeh, H. Naderi-Manesh, K. Khajeh, Protein Eng. Des. Sel. 23, 599 (2010)

    CAS  Article  Google Scholar 

  9. G.C. Fadda, D. Lairez, B. Arrio, J.P. Carton, V. Larreta-Garde, Biophys. J. 85, 2808 (2003)

    CAS  Article  Google Scholar 

  10. A. Beer, Ann. Phys. Chem. 86, 78 (1852)

    Article  Google Scholar 

  11. B. Ranjbar, P. Gill, Chem. Biol. Drug Des. 74, 101 (2009)

    CAS  Article  Google Scholar 

  12. M.R. Eftink, C.A. Ghiron, Biochemistry 16, 5546 (1976)

    Article  Google Scholar 

  13. S. D’Amico, J.C. Marx, C. Gerday, G. Feller, J. Biol. Chem. 278, 7891 (2003)

    Article  Google Scholar 

  14. K. Inouye, S.B. Lee, B. Tonomura, Biochem. J. 315, 133 (1996)

    CAS  Article  Google Scholar 

  15. A. Badoei-Dalfard, K. Khajeh, S.M. Asghari, B. Ranjbar, H.R. Karbalaei-Heidari, J. Biochem. 148, 231 (2010)

    CAS  Article  Google Scholar 

  16. M. Pazhang, K. Khajeh, B. Ranjbar, S. Hosseinkhani, J. Biotechnol. 127, 45 (2006)

    CAS  Article  Google Scholar 

  17. S. Arrhenius, Z. Phys. Chem. 4, 226 (1889)

    Google Scholar 

  18. T. Lonhienne, C. Gerday, G. Feller, Biochim. Biophys. Acta 1543, 1 (2000)

    CAS  Article  Google Scholar 

  19. S. Toma, S. Campagnoli, I. Margarit, R. Gianna, G. Grandi, M. Bolognesi, V. De Filippis, A. Fontana, Biochemistry 30, 97 (1991)

    CAS  Article  Google Scholar 

  20. R.S. Roche, G. Voordouw, B.W. Matthews, Crit. Rev. Biochem. 5, 1 (1978)

    CAS  Article  Google Scholar 

  21. M. Tajima, I. Urabe, K. Yutani, H. Okada, Eur. J. Biochem. 64, 243 (1976)

    CAS  Article  Google Scholar 

  22. D.R. Holland, D.E. Tronrud, H.W. Pley, K.M. Flaherty, W. Stark, J.N. Jansonius, D.B. McKay, B.W. Matthews, Biochemistry 31, 11310 (1992)

    CAS  Article  Google Scholar 

  23. M. Pazhang, K. Khajeh, B. Ranjbar, S. Hosseinkhani, J. Biotechnol. 127, 45 (2006)

    CAS  Article  Google Scholar 

  24. K. Inouye, S.B. Lee, K. Nambu, B. Tonomura, J. Biochem. 122, 358 (1997)

    CAS  Article  Google Scholar 

  25. H. Ogino, T. Uchiho, J. Yokoo, R. Kobayashi, R. Ichise, H. Ishikawa, Appl. Environ. Microbiol. 67, 942 (2001)

    CAS  Article  Google Scholar 

  26. J. Mansfeld, R. Ulbrich-Hofmann, Biotechnol. Bioeng. 97, 672 (2007)

    CAS  Article  Google Scholar 

  27. T. Imanaka, M. Shibazaki, M. Takagi, Nature 324, 695 (1986)

    CAS  Article  Google Scholar 

  28. B. Van den Burg, G. Vriend, O.R. Veltman, G. Venema, V.G.H. Eijsink, Proc. Natl. Acad. Sci. USA 95, 2056 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to the research council of University of Guilan for the financial support during the course of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mohsen Asghari.

Ethics declarations

Conflict of interest

All authors declare that they have no potential conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Asghari, S.M., Isazadeh, M. & Taghdir, M. The relevance of low-affinity Ca-binding sites to the structure, stability and kinetic properties of thermolysin. J IRAN CHEM SOC 13, 1887–1894 (2016). https://doi.org/10.1007/s13738-016-0905-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-016-0905-z

Keywords

  • Thermolysin
  • Ca-binding
  • Structure
  • Enzyme kinetics
  • Stability