Skip to main content
Log in

Highly selective detection of mercury (II) using a G-rich oligonucleotide-based fluorescence quenching method

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

We provide a highly sensitive and selective assay to detect Hg2+ in aqueous solutions using single fluorescence-labeled G-quadruplex at room temperature. The mechanism is that AS1411 converted to G-quadruplex in the presence of potassium ion, and then, by this technique utilizing the high binding capacity of T–Hg2+–T makes the fluorescence dye come closer to GGG of AS1411 to causing fluorescence signal quenching by photoinduced electron transfer energy transfer. At physiological pH, the detection limit can be as low as 10 nM, with high selectivity toward Hg2+ ions over a lot of metal ions. The linear correlation existed between the fluorescence intensity and the concentration of Hg2+ over the range of 0–250 nM (R = 0.9920) in real sample. Accordingly, we expect this G-quadruplex-based sensor will be a potential application for detection of environmentally toxic mercury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.F. Bao, P. He, X.J. Yu, S.L. Jiang, Q.Y. Yan, Detection of Hg2+ using gold nanoparticle probes. Acta Chim. Sinica 67, 2139–2143 (2009)

    CAS  Google Scholar 

  2. D.B. Liu, W.S. Qu, W.W. Chen, W. Zhang, Z. Wang, X.Y. Jiang, Loop-mediated isothermal amplification integrated on microfluidic chips for point-of-care quantitative detection of pathogens. Anal. Chem. 82, 9606–9610 (2010)

    Article  CAS  Google Scholar 

  3. C.C. Huang, H.T. Chang, Selective gold-nanoparticle-based “turn-on” fluorescent sensors for detection of mercury(II) in aqueous solution. Anal. Chem. 78, 8332–8338 (2006)

    Article  CAS  Google Scholar 

  4. Z.L. Jiang, Y.Y. Fan, M.L. Chen, A.H. Liang, X.J. Liao, G.Q. Wen, X.C. Shen, X.C. He, H.C. Pan, H.S. Jiang, Resonance scattering spectral detection of trace Hg2+ using aptamer-modified nanogold as probe and nanocatalyst. Anal. Chem. 81, 5439–5445 (2009)

    Article  CAS  Google Scholar 

  5. N. Kanayama, T. Takarada, M. Maeda, Rapid naked-eye detection of mercury ions based on non-crosslinking aggregation of double-stranded DNA-carrying gold nanoparticles. Chem. Commun. 47, 2077–2079 (2011)

    Article  CAS  Google Scholar 

  6. S. Kim, N.H. Lee, S.H. Seo, M.S. Eom, S. Ahn, M.S. Han, Selective colorimetric sensor for Hg2+ ions using a mixture of thiourea derivatives and gold nanoparticles stabilized with adenosine triphosphate. Chem-Asian J. 5, 2463–2466 (2010)

    Article  CAS  Google Scholar 

  7. L. Li, B. Li, Y. Qi, Y. Jin, Label-free aptamer-based colorimetric detection of mercury ions in aqueous media using unmodified gold nanoparticles as colorimetric probe. Anal. Bioanal. Chem. 393, 2051–2057 (2009)

    Article  CAS  Google Scholar 

  8. Y.W. Lin, C.C. Huang, H.T. Chang, Gold nanoparticle probes for the detection of mercury, lead and copper ions. Analyst 136, 863–871 (2011)

    Article  CAS  Google Scholar 

  9. Y. Wang, F. Yang, X.R. Yang, Colorimetric biosensing of mercury(II) ion using unmodified gold nanoparticle probes and thrombin-binding aptamer. Biosens. Bioelectron. 25, 1994–1998 (2010)

    Article  CAS  Google Scholar 

  10. X.W. Xu, J. Wang, K. Jiao, X.R. Yang, Colorimetric detection of mercury ion (Hg2+) based on DNA oligonucleotides and unmodified gold nanoparticles sensing system with a tunable detection range. Biosens. Bioelectron. 24, 3153–3158 (2009)

    Article  CAS  Google Scholar 

  11. Y.L. Huang, T.M. Hsiung, Y.Y. Chen, Y.F. Huang, C.C. Huang, Colorimetric detection of heavy metal ions using label-free gold nanoparticles and alkanethiols. J. Phys. Chem. C 114, 16329–16334 (2010)

    Article  Google Scholar 

  12. Z. Zhu, Y. Su, J. Li, D. Li, J. Zhang, S. Song, Y. Zhao, G. Li, C. Fan, Highly sensitive electrochemical sensor for mercury(II) ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-based amplification. Anal. Chem. 81, 7660–7666 (2009)

    Article  CAS  Google Scholar 

  13. X.B. Zuo, H.A. Wu, J. Toh, S.F.Y. Li, Mechanism of mercury detection based on interaction of single-strand DNA and hybridized DNA with gold nanoparticles. Talanta 82, 1642–1646 (2010)

    Article  CAS  Google Scholar 

  14. J. Xie, Y. Zheng, J.Y. Ying, Highly selective and ultrasensitive detection of Hg(2+) based on fluorescence quenching of Au nanoclusters by Hg(2+)-Au(+) interactions. Chem. Commun. 46, 961–963 (2010)

    Article  CAS  Google Scholar 

  15. J. Huang, Y. Xu, X. Qian, A rhodamine-based Hg2+ sensor with high selectivity and sensitivity in aqueous solution: a NS2-containing receptor. J. Org. Chem. 74, 2167–2170 (2009)

    Article  CAS  Google Scholar 

  16. H.M. Kim, B.R. Cho, Two-photon fluorescent probes for metal ions. Chem-Asian J. 6, 58–69 (2011)

    Article  CAS  Google Scholar 

  17. C. Lodeiro, J.L. Capelo, J.C. Mejuto, E. Oliveira, H.M. Santos, B. Pedras, C. Nunez, Light and colour as analytical detection tools: a journey into the periodic table using polyamines to bio-inspired systems as chemosensors. Chem. Soc. Rev. 39, 2948–2976 (2010)

    Article  CAS  Google Scholar 

  18. L. Wang, J. Tian, H. Li, Y. Zhang, X. Sun, A novel single-labeled fluorescent oligonucleotide probe for mercury(II) ion detection: using the inherent quenching of deoxyguanosines. J Fluoresc. 21, 1049–1052 (2010)

    Article  Google Scholar 

  19. L. Zhu, J. Qin, C. Yang, Chem. Commun. 46(46), 8755–8757 (2010)

    Article  CAS  Google Scholar 

  20. J. Anichina, Z. Dobrusin, D.K. Bohme, Detection of T–T mismatches using mass spectrometry: specific interactions of Hg(II) with oligonucleotides rich in thymine (T). J. Phys. Chem. B 114, 15106–15112 (2010)

    Article  CAS  Google Scholar 

  21. C.W. Liu, C.C. Huang, H.T. Chang, Highly selective DNA-based sensor for lead(II) and mercury(II) ions. Anal. Chem. 81, 2383–2387 (2009)

    Article  CAS  Google Scholar 

  22. P.J.J. Huang, J.W. Liu, Immobilization of DNA on magnetic microparticles for mercury enrichment and detection with flow cytometry. Chem. Eur. J. 17, 5004–5010 (2011)

    Article  CAS  Google Scholar 

  23. S.Y. Niu, Q.Y. Li, R. Ren, K.C. Hu, DNA/single-walled carbon nanotubes based fluorescence detection of Hg2+. Anal. Lett. 43, 2432–2439 (2010)

    Article  CAS  Google Scholar 

  24. T. Li, S.J. Dong, E.K. Wang, Label-free colorimetric detection of aqueous mercury ion (Hg2+) using Hg2+-modulated G-quadruplex-based DNAzymes. Anal. Chem. 81, 2144–2149 (2009)

    Article  CAS  Google Scholar 

  25. J.P. Xu, Z.G. Song, Y. Fang, J. Mei, L. Jia, A.J. Qin, J.Z. Sun, J. Ji, B.Z. Tang, Label-free fluorescence detection of mercury(II) and glutathione based on Hg2+-DNA complexes stimulating aggregation-induced emission of a tetraphenylethene derivative. Analyst 135, 3002–3007 (2010)

    Article  CAS  Google Scholar 

  26. X.J. Xue, F. Wang, X.G. Liu, One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates. J. Am. Chem. Soc. 130, 3244–3245 (2008)

    Article  CAS  Google Scholar 

  27. Y.Y. Zhou, M.G. Deng, Y.Y. Du, S.Y. Yan, R. Huang, X.C. Weng, C.L. Yang, X.L. Zhang, X. Zhou, A novel cationic triazatetrabenzcorrole: selective detection of mercury(II) by nucleic acid-induced aggregation. Analyst 136, 955–961 (2011)

    Article  CAS  Google Scholar 

  28. C. Díez-Gil, R. Martínez, I. Ratera, T. Hirsh, A. Espinosa, A. Tárraga, P. Molina, O.S. Wolfbeis, J. Veciana, Selective picomolar detection of mercury(II) using optical sensors. Chem. Commun. 47, 1842–1844 (2011)

    Article  Google Scholar 

  29. B.B. Gu, C.L. Miller, W. Dong, X. Jiang, L. Liang, Mercury reduction and complexation by natural organic matter in anoxic environments. Proc. Natl. Acad. Sci. USA 108, 1479–1483 (2011)

    Article  CAS  Google Scholar 

  30. E.M. Nolan, S.J. Lippard, Turn-on and ratiometric mercury sensing in water with a red-emitting probe. J. Am. Chem. Soc. 129, 5910–5918 (2007)

    Article  CAS  Google Scholar 

  31. N. Nagapradeep, S. Verma, Characterization of an unprecedented organomercury adduct via Hg(II)-mediated cyclization of N9-propargylguanine. Chem. Commun. 47, 1755–1757 (2011)

    Article  CAS  Google Scholar 

  32. N. Patel-Sorrentino, J.Y. Benaim, D. Cossa, Y. Lucas, Synthesis of hydrochloric acid solution for total mercury determination in natural waters. Anal. Bioanal. Chem. 399, 1389–1392 (2010)

    Article  Google Scholar 

  33. B. Adhikari, A. Banerjee, Facile synthesis of water-soluble fluorescent silver nanoclusters and HgII sensing. Chem. Mater. 22, 4364–4371 (2010)

    Article  CAS  Google Scholar 

  34. Y. Miyake, H. Togashi, M. Tashiro, H. Yamaguchi, S. Oda, M. Kudo, Y. Tanaka, Y. Kondo, R. Sawa, T. Fujimoto, T. Machinami, A. Ono, Mercury(II)-mediated formation of thymine-Hg-II-thymine base pairs in DNA duplexes. J. Am. Chem. Soc. 128, 2172–2173 (2006)

    Article  CAS  Google Scholar 

  35. Y. Tanaka, S. Oda, H. Yamaguchi, Y. Kondo, C. Kojima, A. Ono, N-15-N-15J-coupling across Hg-II: direct observation of Hg-II-mediated T–T base pairs in a DNA duplex. J. Am. Chem. Soc. 129, 244–245 (2007)

    Article  CAS  Google Scholar 

  36. M. Torimura, S. Kurata, K. Yamada, T. Yokomaku, Y. Kamazata, T. Kanagawa, R. Kurane, Fluorescence-quenching phenomenon by photoinduced electron transfer between a fluorescent dye and a nucleotide base. Anal. Sci. 17, 155–160 (2001)

    Article  CAS  Google Scholar 

  37. Y.-An. Shieh, S.-J. Yang, M.-F. Wei, M.-J. Shieh, Aptamer-based tumor-targeted drug delivery for photodynamic therapy. Acs Nano 4, 1433–1442 (2010)

  38. S. Wang, E.S. Forzani, N. Tao, Detection of heavy metal ions in water by high-resolution surface plasmon resonance spectroscopy combined with anodic stripping voltammetry. Anal. Chem. 79, 4427–4432 (2007)

    Article  CAS  Google Scholar 

  39. E.M. Nolan, S.J. Lippard, Turn-on and ratiometric mercury sensing in water with a red-emitting probe. J. Am. Chem. Soc. 129, 5910–5918 (2007)

    Article  CAS  Google Scholar 

  40. F. Song, S. Watanabe, P.E. Floreancig, K. Koide, Oxidation-resistant fluorogenic probe for mercury based on alkyne oxymercuration. J. Am. Chem. Soc. 130, 16460–16461 (2008)

  41. P. Chen, C. He, A general strategy to convert the MerR family proteins into highly sensitive and selective fluorescent biosensors for metal ions. J. Am. Chem. Soc. 126, 728–729 (2004)

    Article  CAS  Google Scholar 

  42. L.J. Ma, Y. Li, L. Li, J. Sun, C. Tian, Y. Wu, A protein-supported fluorescent reagent for the highly-sensitive and selective detection of mercury ions in aqueous solution and live cells. Chem. Commun. 44, 6345–6347 (2008)

    Article  Google Scholar 

  43. I.B. Kim, U.H.F. Bunz, Modulating the sensory response of a conjugated polymer by proteins: an agglutination assay for mercury ions in water. J. Am. Chem. Soc. 128, 2818–2819 (2006)

    Article  CAS  Google Scholar 

  44. Y. Kim, R.C. Johnson, J.T. Hupp, Gold nanoparticle-based sensing of “spectroscopically silent” heavy metal ions. Nano Lett. 1, 165–167 (2001)

    Article  Google Scholar 

  45. D. Li, A. Wieckowska, I. Willner, Optical analysis of Hg2+ ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines. Angew. Chem. Int. Ed. 47, 3927–3931 (2008)

    Article  CAS  Google Scholar 

  46. H. Li, Y. Zhang, X. Wang, D. Xiong, Y. Bai, Calixarene capped quantum dots as luminescent probes for Hg2+ ions. Mater. Lett. 61, 1474–1477 (2007)

    Article  CAS  Google Scholar 

  47. J. Li, J. Chen, Y. Chen, Y. Li, S.A. Shahzad, Y. Wang, M. Yang, C. Yu, Fluorescence turn-on detection of mercury ions based on the controlled adsorption of a perylene probe onto the gold nanoparticles. Analyst 141, 346–351 (2016)

    Article  CAS  Google Scholar 

  48. J. Falandysz, J. Zhang, Y.Z. Wang, M. Saba, G. Krasińska, A. Wiejak, T. Li, Evaluation of mercury contamination in fungi boletus species from latosols, lateritic red earths, and red and yellow earths in the circum-pacific mercuriferous belt of southwestern China. PLoS One 10, e0143608 (2015)

    Article  Google Scholar 

  49. K. Chauhan, P. Singh, R.K. Singhal, New chitosan–thiomer: an efficient colorimetric sensor and effective sorbent for mercury at ultralow concentration. ACS Appl. Mater. Interfaces 7, 26069–26078 (2015)

    Article  CAS  Google Scholar 

  50. S.J. Cobbina, A.B. Duwiejuah, R. Quansah, S. Obiri, N. Bakobie, Comparative assessment of heavy metals in drinking water sources in two small-scale mining communities in northern Ghana. Int. J. Environ. Res. Public Health 12, 10620–10634 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Inner Mongolia (Grant No. 2013MS0217), the Program of Higher level talents of Inner Mongolia University (Grant No. 135118). This research work was supported by the Open Funds of the State Key Laboratory of Electroanalytical Chemistry (SKLEAC201503).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Ai or Guohong Yun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ai, J., Ga, L. & Yun, G. Highly selective detection of mercury (II) using a G-rich oligonucleotide-based fluorescence quenching method. J IRAN CHEM SOC 13, 991–997 (2016). https://doi.org/10.1007/s13738-016-0812-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-016-0812-3

Keywords

Navigation