Advertisement

Journal of the Iranian Chemical Society

, Volume 13, Issue 5, pp 881–890 | Cite as

Modification and stabilizing effects of PEG on resveratrol-loaded solid lipid nanoparticles

  • Jun-Qing Su
  • Zhen WenEmail author
  • Yi-Ai Wen
  • Wan-Ni Xiao
  • Jing Lin
  • Zong-Kun Zheng
Original Paper

Abstract

Resveratrol-loaded solid lipid nanoparticles (SLNs) modified by polyethylene glycol (PEG2000) (RES–PEG–SLNs) were prepared to study the stabilizing influences of PEG2000 on SLNs properties including loading capacity, particle size, photostability, and release. The micromorphology, particle size distribution, drug–lipid–modifier interaction and crystalline structure were characterized to elucidate stabilizing effects of PEG2000 on SLNs. Compared with ordinary SLNs, SLNs modified by PEG2000 at relatively low amounts of [m(PEG2000):m(lipids) = 1:10] exhibit high drug loading, steady nanoparticle size distributions, photostability and sustained release. According to characterizations, RES–PEG–SLNs formation is dependent on the physical interactions of drug–lipid–modifier. Since PEG2000 is doped into lipid matrix in a non-crystalline state, the lipids crystalline arrangement is disrupted. Additionally, RES–PEG–SLNs are crystallized in a PEG2000/lipid eutectic mixture rather than a simple mixture, inhibiting the lipid polymorphism transformation from α- to β-form, and therefore preventing drug exclusion from the lipid matrix. The PEG2000/lipid matrix contains lattice defects, which allow for the incorporation of more resveratrol and preventing it from photodegradation effectively. In contrast to the burst release of SLNs modified without PEG2000, resveratrol is released more slowly from the lattice defects in lipid matrix of RES–PEG–SLNs, resulting in a sustained release fitted by a two-stage exponential kinetic equation. PEG2000 is distributed on the RES–PEG–SLNs surface, increasing repulsion between nanoparticles and avoiding particles aggregation. These results confirm that both matrix doping effects and surface steric hindrance produced by the presence of PEG2000 play important roles in maintaining high loadings, nanoparticle size, photostability and sustained release.

Keywords

Solid lipid nanoparticles PEG2000 Stability Resveratrol Doping effect Steric hindrance 

Notes

Acknowledgments

Financial support for this work was provided by the Natural Science Foundation of China (No. 21276160), the Natural Science Foundation of Guangdong Province, China (No. 2015A030313540) and Basic Research Project of Shenzhen city, China (No. JCYJ20150525092941062).

References

  1. 1.
    R.H. Müller, K. Mäder, S. Gohla, Eur. J. Pharm. Biopharm. 50, 161 (2000)CrossRefGoogle Scholar
  2. 2.
    E.A. Fouad, A.E.B. Yassin, H.N. Alajami, Trop. J. Pharm. Res. 14, 205 (2015)CrossRefGoogle Scholar
  3. 3.
    J. Tomé-Carneiro, M. Gonzálvez, M. Larrosa, M.J. Yáñez-Gascón, F.J. García-Almagro, J.A. Ruiz-Ros, F.A. Tomás-Barberán, M.T. García-Conesa, J.C. Espín, Ann. NY. Acad. Sci. 1290, 37 (2013)CrossRefGoogle Scholar
  4. 4.
    J.G. Franco, P.C. Lisboa, N.S. Lima, T.A. Amaral, N. Peixoto-Silva, A.C. Resende, E. Oliveira, M.C. Passos, E.G. Moura, J. Nutr. Biochem. 24, 960 (2013)CrossRefGoogle Scholar
  5. 5.
    A. Francioso, P. Mastromarino, A. Masci, M. Erme, L. Mosca, Med. Chem. 10, 237 (2014)CrossRefGoogle Scholar
  6. 6.
    E.H. Gokce, E. Korkmaz, E. Dellera, G. Sandri, M.C. Bonferoni, O. Ozer, Int. J. Nanomed. 7, 1841 (2012)CrossRefGoogle Scholar
  7. 7.
    A.R. Neves, M. Lúcio, S. Martins, J.L. Lima, S. Reis, Int. J. Nanomed. 8, 177 (2013)CrossRefGoogle Scholar
  8. 8.
    N.P. Aditya, A.S. Macedo, S. Doktorovovac, E.B. Souto, S. Kim, P.S. Chang, S. Ko, Lebensm.-Wiss. Technol. 59, 115 (2014)CrossRefGoogle Scholar
  9. 9.
    R.H. Müller, S.A. Runge, V. Ravelli, A.F. Thünemann, W. Mehnert, E.B. Souto, Eur. J. Pharm. Biopharm. 68, 535 (2008)CrossRefGoogle Scholar
  10. 10.
    T. Madheswaran, R. Baskaran, C.S. Yong, B.K. Yoo, AAPS Pharmscitech 15, 44 (2014)CrossRefGoogle Scholar
  11. 11.
    H. Salminen, T. Helgason, S. Aulbach, J. Colloid Interf. Sci. 426, 156 (2014)CrossRefGoogle Scholar
  12. 12.
    C. Qian, E. Decker, H. Xiao, Food Res. Int. 52, 342 (2013)CrossRefGoogle Scholar
  13. 13.
    A.B. Kovačević, R.H. Müller, S.D. Savić, Colloid Surf. A 444, 15 (2014)CrossRefGoogle Scholar
  14. 14.
    H.J. Cho, J.W. Park, I.S. Yoon, D.D. Kim, Int. J. Nanomed. 9, 495 (2014)Google Scholar
  15. 15.
    F.Z. Wang, L. Chen, D.S. Zhang, J. Drug Target. 22, 849 (2014)CrossRefGoogle Scholar
  16. 16.
    X.L. Jing, L. Deng, B.A. Gao, L. Xiao, Y.Y. Zhang, X.F. Ke, J.H. Lian, Q. Zhao, L.L. Ma, J.Z. Yao, J.M. Chen, Nanomed-Nanotechnol. 10, 371 (2014)CrossRefGoogle Scholar
  17. 17.
    J.J. Luan, X.Y. Yang, L.J. Chu, Y.M. Xi, G.X. Zhai, J. Colloid Interf. Sci. 428, 49 (2014)CrossRefGoogle Scholar
  18. 18.
    Z. Wen, X.K. You, L.Z. Jiang, B. Liu, Z.K. Zheng, Y.T. Pu, B. Cheng, Flavour Frag. J. 26, 27 (2011)CrossRefGoogle Scholar
  19. 19.
    F. Buiarelli, F. Coccioli, R. Jasionowska, M. Merolle, A. Terracciano, Chromatographia 64, 475 (2016)CrossRefGoogle Scholar
  20. 20.
    H. Yuan, L. Wang, Y.Z. Du, J. You, F.Q. Hu, S. Zeng, Colloid Surf. B 60, 174 (2007)CrossRefGoogle Scholar
  21. 21.
    C. Li, C.X. Li, Y. Le, J.F. Chen, Int. J. Pharm. 404, 257 (2011)CrossRefGoogle Scholar
  22. 22.
    A.E. Mengesha, R.J. Wydra, J.Z. Hilt, P.M. Bummer, Pharm. Res. 30, 3214 (2013)CrossRefGoogle Scholar
  23. 23.
    E.V. Agafonova, Y.V. Moshchenskiy, M.L. Tkachenko, Thermochim. Acta 580, 1 (2014)CrossRefGoogle Scholar
  24. 24.
    H. Fauzi, H.S.C. Metselaar, T.M.I. Mahlia, M. Silakhori, Appl. Therm. Eng. 66, 328 (2014)CrossRefGoogle Scholar
  25. 25.
    K.O. Choi, N.P. Adity, S. Ko, Food Chem. 147, 239 (2014)CrossRefGoogle Scholar
  26. 26.
    D. Pandit, S. Kumar, N. Poonia, V. Lather, Food Res. Int. 62, 1165 (2014)CrossRefGoogle Scholar
  27. 27.
    D.N. Xia, F.D. Cui, Y. Gan, H.L. Mu, M.S. Yang, J. Pharm. Sci. 103, 697 (2014)CrossRefGoogle Scholar
  28. 28.
    M. Cohen-Avrahami, A.I. Shames, M.F. Ottaviani, A. Aserin, N. Garti, Colloid Surf. B 122, 231 (2014)CrossRefGoogle Scholar
  29. 29.
    J.L. Wang, X.Y. Dong, F. Wei, J. Zhong, B. Liu, M.H. Yao, M. Yang, C. Zheng, S.Y. Quek, H. Chen, J. Food Sci. 79, E169 (2014)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2016

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringShenzhen UniversityShenzhenChina

Personalised recommendations