Skip to main content
Log in

Hydrogen physisorption and selectivity in single-walled silicon carbon nanotubes: a grand canonical Monte-Carlo study

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

We report grand canonical Monte-Carlo simulations of pure hydrogen physisorption and its binary mixtures with nitrogen and methane H/N2H2/CH4 in single-walled silicon carbon nanotubes (SWSiCNTs). We investigate the effect of temperature, pressure, tube diameter and the influence of the presence of the second molecule on the adsorption of hydrogen. Some obtained results have compared with that of boron nitride and carbon nanotubes and it shows that the SWSiCNT has more hydrogen adsorbable than single-walled boron nitride (SWBNNT) and carbon nanotube (SWCNT) in same chirality of nanotube and same thermodynamic conditions. Furthermore, the influence of tube length on hydrogen adsorption capacity has been illustrated in various SWSiCNT, SWBNNT and SWCNT and the calculations show that the hydrogen adsorption holds the line when the tube length increases. In addition, pure hydrogen adsorption is investigated in rhombic and square SWSiCNT arrays, while the results of this investigation illustrate that rhombic and square SWSiCNT arrays have gravimetric hydrogen capacities between rhombic and square silicon and carbon nanotube arrays, in same thermodynamics conditions and same tube diameters. The simulation data of pure hydrogen fit to Langmuir, Freundlich and Langmuir–Freundlich equations and the Langmuir–Freundlich equation has the best behavior fitting to hydrogen adsorption data; it emphasizes that the multi-layer pure hydrogen adsorptivity occurs more prominently in SWSiCNTs. Also, the excess and delivery isotherms of hydrogen were calculated for various SWSiCNTs, SWBNNTs and SWCNTs. Furthermore, the adsorption selectivity in different mole fractions of hydrogen/methane and hydrogen/nitrogen mixtures in SWSiCNTs has investigated at 77 and 298 K on (8,8) and (15,15) SWSiCNTs, and results show that selectivity-based adsorption decreases at 298 K in both mixtures while increasing pressure and temperature can increase selectivities and the selectivity is not related to the diameter of nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Y.F. Yin, T. Mays, B. McEnaney, Langmuir 16, 10521 (2000)

    Article  CAS  Google Scholar 

  2. S. Agnihotri, Y.J. Zheng, J.P.B. Mota, I. Ivanov, P.C. Kim, J. Phys. Chem. C 111, 13747 (2007)

    Article  CAS  Google Scholar 

  3. T. Ohkubo, J. Miyawaki, K. Kaneko, R. Ryoo, N.A. Seaton, J. Phys. Chem. B 106, 6523 (2002)

    Article  CAS  Google Scholar 

  4. J. Lan, D. Cheng, D. Cao, W. Wang, J. Phys. Chem. C 112, 5598 (2008)

    Article  CAS  Google Scholar 

  5. X.-H. Sun, C.-P. Li, W.-K. Wong, N.-B. Wong, C.-S. Lee, S.-T. Lee, B.-K. Teo, J. Am. Chem. Soc. 124, 14464 (2002)

    Article  CAS  Google Scholar 

  6. G. Arora, N.J. Wagner, S.I. Sandler, Langmuir ACS J. Surf. Coll. 20, 6268 (2004)

    Article  CAS  Google Scholar 

  7. I. Efremenko, M. Sheintuch, Langmuir ACS J. Surf. Coll. 21, 6282 (2005)

    Article  CAS  Google Scholar 

  8. Y. Li, R.T. Yang, C. Liu, Z. Wang, Ind. Eng. Chem. Res. 46, 8277 (2007)

    Article  CAS  Google Scholar 

  9. S. Konduri, H.M. Tong, S. Chempath, S. Nair, J. Phys. Chem. C 112, 15367 (2008)

    Article  CAS  Google Scholar 

  10. G.P. Das, S. Bhattacharya, C. Majumder, J. Phys. Chem. C 112, 17487 (2008)

    Article  CAS  Google Scholar 

  11. M.L. Usrey, M.S. Strano, J. Phys. Chem. C 113, 12443 (2009)

    Article  CAS  Google Scholar 

  12. C. Pham-Huu, J. Catal. 200, 400 (2001)

    Article  CAS  Google Scholar 

  13. A. Mavrandonakis, G.E. Froudakis, M. Schnell, M. Mühlhäuser, Nano Lett. 3, 1481 (2003)

    Article  CAS  Google Scholar 

  14. M. Menon, E. Richter, A. Mavrandonakis, G. Froudakis, and A. Andriotis Phys. Rev. B 69, (2004)

  15. K. Malek, M. Sahimi, J. Chem. Phys. 132, 014310 (2010)

    Article  CAS  Google Scholar 

  16. G. Mpourmpakis, G.E. Froudakis, G.P. Lithoxoos, J. Samios, Nano Lett. 6, 1581 (2006)

    Article  CAS  Google Scholar 

  17. S.J. Mahdizadeh, E.K. Goharshadi, Int. J. Hydrogen Energy 39, 1719 (2014)

    Article  CAS  Google Scholar 

  18. J. Cheng, X. Yuan, L. Zhao, D. Huang, M. Zhao, L. Dai, R. Ding, Carbon 42, 2019 (2004)

    Article  CAS  Google Scholar 

  19. J. Cheng, L. Zhang, R. Ding, Z. Ding, X. Wang, Z. Wang, Int. J. Hydrogen Energy 32, 3402 (2007)

    Article  CAS  Google Scholar 

  20. J. Cheng, R. Ding, Y. Liu, Z. Ding, L. Zhang, Comput. Mater. Sci. 40, 341 (2007)

    Article  CAS  Google Scholar 

  21. J. Jiang, S.I. Sandler, Langmuir ACS J. Surf. Coll. 20, 10910 (2004)

    Article  CAS  Google Scholar 

  22. P. Kowalczyk, L. Brualla, A. Zywoci´nski, S.K. Bhatia, J. Phys. Chem. C 111, 5250 (2007)

    Article  CAS  Google Scholar 

  23. G.C. Ana, M. Morales-Cas, C. Moya, B. Coto, L.F. Vega, J. Phys. Chem. C 111, 6473 (2007)

    Article  CAS  Google Scholar 

  24. L. Huang, L. Zhang, Q. Shao, L. Lu, X. Lu, S. Jiang, W. Shen, J. Phys. Chem. C 111, 11912 (2007)

    Article  CAS  Google Scholar 

  25. P. Kowalczyk, R. Holyst, Environ. Sci. Technol. 42, 2931 (2008)

    Article  CAS  Google Scholar 

  26. D. Allen, A.P. Tildesley, Computer Simulation of Liquids (Oxford University Press, New York, 1987)

  27. A. Gupta, S. Chempath, M.J. Sanborn, L.A. Clark, R.Q. Snurr, Mol. Simul. 29, 29 (2003)

    Article  CAS  Google Scholar 

  28. M. Shadman, Z. Ahadi, Fuller. Nanotub. Carbon Nanostruct. 19, 700 (2011)

    Article  Google Scholar 

  29. Z. Ahadi, M. Shadman, S. Yeganegi, F. Asgari, J. Mol. Model. 18, 2981 (2012)

    Article  CAS  Google Scholar 

  30. B. Choi, D. Choi, Y. Lee, B. Lee, S. Kim, J. Chem. Eng. Data 48, 603 (2003)

    Article  CAS  Google Scholar 

  31. T. Düren, http://people.bath.ac.uk/td222/research/excess/index.html (n.d.)

  32. T. Du, L. Sarkisov, O. M. Yaghi, R. Q. Snurr, 2683 (2004)

  33. S. Biloe, V. Goetz, S. Mauran, AIChE J. 47, 2819 (2001)

    Article  CAS  Google Scholar 

  34. S.J. Mahdizadeh, S.F. Tayyari, J. Mol. Model. 18, 2699 (2012)

    Article  CAS  Google Scholar 

  35. S.J. Mahdizadeh, S.F. Tayyari, Theoret. Chem. Acc. 128, 231 (2011)

    Article  CAS  Google Scholar 

  36. X. Li, W. Yang, B. Liu, Nano Lett. 7, 3709 (2007)

    Article  CAS  Google Scholar 

  37. A.A. Rafati, S.M. Hashemianzadeh, Z.B. Nojini, N. Naghshineh, J. Comput. Chem. 31, 1443 (2010)

    CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to the Research Councils of University of Mazandaran and University of Zanjan for their supports of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Yeganegi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shadman, M., Yeganegi, S. & Galugahi, M.R. Hydrogen physisorption and selectivity in single-walled silicon carbon nanotubes: a grand canonical Monte-Carlo study. J IRAN CHEM SOC 13, 207–220 (2016). https://doi.org/10.1007/s13738-015-0728-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-015-0728-3

Keywords

Navigation