Skip to main content
Log in

Multiple response optimization of sequential speciation of chromium in water samples by in situ solvent formation dispersive liquid–liquid microextraction prior to electrothermal atomic absorption spectrometry determination

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

A sensitive and selective in situ solvent formation dispersive liquid–liquid microextraction (in situ DLLME) method followed by electrothermal atomic absorption spectrophotometry for sequential extraction and determination of trace level of chromium (Cr) species was developed. The preconcentration and extraction of Cr species were carried out using ammonium pyrrolidine dithiocarbamate as a chelating agent, and a water-immiscible ionic liquid based on in situ solvent formation as an extraction solvent. Various operating variables such as sample pH, the KPF6 amount and the ionic liquid volume on the extraction efficiency responses (EE%) of Cr(III) and Cr(VI) ions were investigated. Response surface methodology using central composite design was employed for modeling of the responses. Multi-response optimization with desirability function (DF) approach has been used to maximize EE% one Cr species in the presence of another species. After this step, DF was employed to optimize the variables to define the best extraction conditions for Cr speciation. Under the optimal extraction conditions, the calibration curves were linear in the concentration ranges of 20–200 ng L−1 for Cr(III) and 70–250 ng L−1 for Cr(VI) with the limit of detections of 3.7 ng L−1 for Cr(III) and 2.13 ng L−1 for Cr(VI). The relative standard deviations of five microextractions of 100 ng L−1 Cr(III) and Cr(VI) were 9.07 % and 2.39 %, respectively. Finally, the developed method was applied to the determination of Cr(III) and Cr(VI) ions in real water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H.G. Preuss, B. Echard, N.V. Pericone, D. Bagchi, T. Yasmin, S.J. Stohs, J. Inorg. Biochem. 102, 1986 (2008)

    Article  CAS  Google Scholar 

  2. R. Sreekanth, V. Pattabhi, S.S. Rajan, Biochem. Biophys. Res. Commun. 369, 725 (2008)

    Article  CAS  Google Scholar 

  3. S. Comber, M. Gardner, J. Environ. Monit. 5, 410 (2003)

    Article  CAS  Google Scholar 

  4. A.D. Apte, V. Tare, P. Bose, J. Hazard. Mater. 128, 164 (2006)

    Article  CAS  Google Scholar 

  5. S. Balasubramanian, V. Pugalenthi, Talanta 50, 457 (1999)

    Article  CAS  Google Scholar 

  6. I. Boevski, N. Daskalova, I. Havezov, Spectrochim. Acta B 55, 1643 (2000)

    Article  Google Scholar 

  7. M.V. Aguilar, C.J. Mateos, M.C.M. Para, J. Trace Elem. Med Biol. 16, 221 (2002)

    Article  CAS  Google Scholar 

  8. Kartal Saçmacı, Y. Yılmaz, M. Saçmacı, C. Soykan. Chem. Eng. J. 181–182, 746 (2012)

    Article  CAS  Google Scholar 

  9. C. Duran, D. Ozdes, A. Gundogdu, M. Imamoglu, H.B. Senturk, Anal. Chim. Acta 688, 75 (2012)

    Article  CAS  Google Scholar 

  10. A. Karatepe, E. Korkmaz, M. Soylak, L. Elci, J. Hazard. Mater. 173, 433 (2010)

    Article  CAS  Google Scholar 

  11. J. Lu, J. Tian, H. Wu, C. Zhao, Anal. Lett. 42, 1662 (2009)

    Article  CAS  Google Scholar 

  12. N.E. El-Hefny, Sep. Purif. Technol. 67, 44 (2009)

    Article  CAS  Google Scholar 

  13. C. Zeng, Y. Lin, N. Zhou, J. Zheng, W. Zhang, J. Hazard. Mater. 237–238, 365 (2012)

    Article  CAS  Google Scholar 

  14. P. Hemmatkhah, A. Bidari, S. Jafarvand, M.R. Milani, Hosseini, Y. Assadi. Microchim. Acta 166, 69 (2009)

    Article  CAS  Google Scholar 

  15. H. Chen, P. Du, J. Chen, S. Hu, S. Li, H. Liu, Talanta 81, 176 (2010)

    Article  CAS  Google Scholar 

  16. M. Baghdadi, F. Shemirani, Anal. Chim. Acta 634, 186 (2009)

    Article  CAS  Google Scholar 

  17. J.L. Anderson, D.W. Armstrong, G.T. Wei, Anal. Chem. 78, 2892 (2007)

    Article  Google Scholar 

  18. S. Sadeghi, A.Z. Moghaddam, Talanta 99, 758 (2012)

    Article  CAS  Google Scholar 

  19. M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, L.A. Escaleira, Talanta 76, 965 (2008)

    Article  CAS  Google Scholar 

  20. D.C. Montgomery, Design and analysis of experiments, 5th edn. (Wiley, New York, 2004)

    Google Scholar 

  21. E. Morgan, Chemometrics: experimental design (Wiley, New York, 1991)

    Google Scholar 

  22. G. Derringer, R. Suich, J. Qual. Technol. 12, 214 (1980)

    Google Scholar 

  23. D. Baş, I.H. Boyacı, J. Food Eng. 78, 836 (2007)

    Article  CAS  Google Scholar 

  24. C.F. Mandenius, A. Brundin, Biotechnol. Progr. 24, 1191 (2008)

    Article  CAS  Google Scholar 

  25. H. Serashti, A. Rohani Far, S. Samadi, Anal. Lett. 45, 1426 (2012)

    Article  CAS  Google Scholar 

  26. B.S. Kaith, Saruchi, R. Jindal, M.S. Bhatti, Soft Matter 8, 2286 (2012)

    Article  CAS  Google Scholar 

  27. I. López-García, M. Briceño, Y. Vicente-Martínez, M. Hernández-Córdoba, Talanta 115, 166 (2013)

    Article  CAS  Google Scholar 

  28. R.A. Gil, S. Cerutti, J.A. Gasquez, R.A. Olsina, L.D. Martinez, Talanta 68, 1065 (2006)

    Article  CAS  Google Scholar 

  29. P. Liang, H. Sang, J. Hazard. Mater. 154, 1115 (2008)

    Article  CAS  Google Scholar 

  30. S. Wen, J. Wu, X. Zhu, J. Mol. Liq. 180, 59 (2013)

    Article  CAS  Google Scholar 

  31. B. Majidi, F. Shemirani, Microchim. Acta 176, 143 (2012)

    Article  CAS  Google Scholar 

  32. P. Berton, L. Vera-Candioti, H.C. Goicoeche, R.G. Wuilloud, Anla. Methods 5, 5065 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Research Council of the Birjand University for funding this work. Further, they thank Dr. Reza Gheshlaghi for the helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Sadeghi.

Ethics declarations

Conflicts of interest

No author has any conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 136 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi, S., Moghaddam, A.Z. Multiple response optimization of sequential speciation of chromium in water samples by in situ solvent formation dispersive liquid–liquid microextraction prior to electrothermal atomic absorption spectrometry determination. J IRAN CHEM SOC 13, 117–130 (2016). https://doi.org/10.1007/s13738-015-0719-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-015-0719-4

Keywords

Navigation