Skip to main content
Log in

Two new organotin(IV)-phosphoryl complexes: crystal structure and Hirshfeld surface analysis

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Hirshfeld surfaces and two-dimensional fingerprint plots are used to visualize and analyse intermolecular interactions in two new organotin(IV)-phosphoryl complexes: [Sn(CH3)2[OP(O)(OCH3)2]2]n (I) and {[(4-CH3)C6H4NH][C5H9(4-CH3)N]2P(O)}Sn(CH3)2Cl2 (II). In (I), the asymmetric unit is composed of the Sn(CH3)2[OP(O)(OCH3)2]2 segment bonded to the neighbouring segment through Sn–O bonds thus constructing a coordination polymer. The tin centre has an Sn[C]2[O]4 environment with the axial positions occupied by methyl groups and with the oxygen atoms of Sn–O bonds located at the equatorial plane, while the oxygen atoms of OCH3 groups do not take part in the coordination interaction. In (II), the asymmetric unit contains one complete molecule and the tin centre has an Sn[C]2[Cl]2O trigonal bipyramid coordination environment, where the phosphoric triamide ligand and one of the chlorine atoms are placed in axial positions. Hirshfeld surface analysis on the asymmetric unit of (I) shows a contribution of 5.9 % of total interactions in crystal for Sn…O contacts related to involving of four-coordinated Sn site of asymmetric unit with two oxygen atoms of two neighbouring phosphates in the coordination polymer. The Sn centre in the asymmetric unit of (II) receives a second interaction from chlorine atom that, however, has negligible contribution portion in the total interactions (evaluated by fingerprint plot) in the crystal. On the other hand, this chlorine affects the geometry at the Sn atom and causes the open C–Sn–C bond angle (of 140.18(24)°). For both structures, the contribution of H…H contacts to the total interaction is decisive, being 59.1 % for (I) and 73.9 % for (II); so that the one distinct spike observed in each of the fingerprint plots is related to H…H contacts. The O…H (34.1 %) in (I) and the H…Cl (20.2 %) in (II) are the characteristic intermolecular contacts in the corresponding structures, monitoring as two pairs of H-bond spikes for O…H and two sharp spikes for H…Cl. Furthermore, the structure (I) does not show the C…H interaction, whereas (II) including unsaturated carbon atoms manifests such interaction (5.7 %) as two very short spikes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L. Niu, Y. Li, Q. Li, Inorg. Chim. Acta 423, 2–13 (2014)

    Article  CAS  Google Scholar 

  2. C.E. Carraher Jr, M.R. Roner, J. Organomet. Chem. 751, 67–82 (2014)

    Article  CAS  Google Scholar 

  3. S.K. Hadjikakou, N. Hadjiliadis, Coord. Chem. Rev. 253, 235–249 (2009)

    Article  CAS  Google Scholar 

  4. L. Pellerito, L. Nagy, Coord. Chem. Rev. 224, 111–150 (2002)

    Article  CAS  Google Scholar 

  5. C. Ma, M. Yang, R. Zhang, J. Li, Inorg. Chem. Commun. 10, 1330–1334 (2007)

    Article  CAS  Google Scholar 

  6. S. Vassiliou, A. Grabowiecka, P. Kosikowska, A. Yiotakis, P. Kafarski, L. Berlicki, J. Med. Chem. 51, 5736–5744 (2008)

    Article  CAS  Google Scholar 

  7. Y. Mehellou, C. McGuigan, A. Brancale, J. Balzarini, Bioorg. Med. Chem. Lett. 17, 3666–3669 (2007)

    Article  CAS  Google Scholar 

  8. R.J. Hansen, S.M. Ludeman, S.J. Paikoff, A.E. Pegg, M.E. Dolan, DNA Repair 6, 1145–1154 (2007)

    Article  CAS  Google Scholar 

  9. X.J. Zou, G.Y. Jin, Z.X. Zhang, J. Agric. Food Chem. 50, 1451–1454 (2002)

    Article  CAS  Google Scholar 

  10. R.D. O’Brien, J. Agric. Food Chem. 11, 163–166 (1963)

    Article  Google Scholar 

  11. A.J. Metta-Magaña, M. Pourayoubi, K.H. Pannell, M. Rostami Chaijan, H. Eshtiagh-Hosseini, J. Mol. Struct. 1014, 38–46 (2012)

    Article  Google Scholar 

  12. M. Pourayoubi, J.A. Golen, M. Rostami Chaijan, V. Divjakovic, M. Negari, A.L. Rheingold, Acta Cryst. Sect. C 67, m160–m164 (2011)

    Article  CAS  Google Scholar 

  13. R. Kapoor, A. Gupta, P. Venugopalan, A.P. Singh Pannu, M. Singh Hundal, P. Kapoor, J. Organomet. Chem. 694, 623–629 (2009)

    Article  CAS  Google Scholar 

  14. K. Gholivand, Z. Shariatinia, M. Pourayoubi, Polyhedron 25, 711–721 (2006)

    Article  CAS  Google Scholar 

  15. K. Gholivand, S. Farshadian, Inorg. Chim. Acta 368, 111–123 (2011)

    Article  CAS  Google Scholar 

  16. M. Pourayoubi, M. Toghraee, R.J. Butcher, V. Divjakovic, Struct. Chem. 24, 1135–1144 (2013)

    Article  CAS  Google Scholar 

  17. M.A. Sanhoury, M.T. Ben Dhia, M.R. Khaddar, J. Fluorine Chem. 132, 865–869 (2011)

    Article  CAS  Google Scholar 

  18. R. Zhang, J. Wu, Q. Wang, C. Ma, Heteroat. Chem. 21, 298–303 (2010)

    Article  CAS  Google Scholar 

  19. C. Ma, J. Zhang, Q. Jiang, R. Zhang, Inorg. Chim. Acta 357, 2791–2797 (2004)

    Article  CAS  Google Scholar 

  20. E.G. Zinov’eva, V.A. Efimov, N.I. Kol’tsov, R.Z. Musin, M.N. Dimukhametov, A.T. Gubaidullin, D.B. Krivolapov, Zh. Obshch. Khim. (Russ. J. Gen. Chem.) 78, 1274–1289 (2008)

    Google Scholar 

  21. R. Murugavel, S. Shanmugan, Organometallics 27, 2784–2788 (2008)

    Article  CAS  Google Scholar 

  22. L.F. Piedra-Garza, S. Reinoso, M.H. Dickman, M.M. Sanguineti, U. Kortz, Dalton Trans. 6231–6234 (2009)

  23. M.T. Ben Dhia, M.A. Sanhoury, K. Essalah, M.R. Khaddar, Phosphorus, Sulfur Silicon Relat. Elem. 186, 1922–1931 (2011)

    Article  CAS  Google Scholar 

  24. T. Munguia, M. López-Cardoso, F. Cervantes-Lee, K.H. Pannell, Inorg. Chem. 46, 1305–1314 (2007)

    Article  CAS  Google Scholar 

  25. R. Murugavel, R. Pothiraja, S. Shanmugan, J. Organomet. Chem. 692, 1920–1923 (2007)

    Article  CAS  Google Scholar 

  26. K. Sakamoto, H. Ikeda, H. Akashi, T. Fukuyama, A. Orita, J. Otera, Organometallics 19, 3242–3248 (2008)

    Article  Google Scholar 

  27. P. Ramaswamy, S. Natarajan, Eur. J. Inorg. Chem. 17, 3463–3471 (2006)

    Article  Google Scholar 

  28. J.P. Ashmore, T. Chivers, K.A. Kerr, J.H.G. Van Roode, Inorg. Chem. 16, 191–197 (1977)

    Article  CAS  Google Scholar 

  29. S.W. Ng, Acta Cryst. Sect. C 54, 745–750 (1998)

    Article  Google Scholar 

  30. K.C. Molloy, F.A.K. Nasser, C.L. Barnes, D. Van der Helm, J.J. Zuckerman, Inorg. Chem. 21, 960–964 (1982)

    Article  CAS  Google Scholar 

  31. K.C.K. Swamy, C.G. Schmid, R.O. Day, R.R. Holmes, J. Am. Chem. Soc. 112, 223–228 (1990)

    Article  CAS  Google Scholar 

  32. F.H. Allen, Acta Cryst. Sect. B 58, 380–388 (2002)

    Article  Google Scholar 

  33. M. Pourayoubi, S. Shoghpour Bayraq, A. Tarahhomi, M. Nečas, K. Fejfarová, M. Dušek, J. Organomet. Chem. 751, 508–518 (2014)

    Article  CAS  Google Scholar 

  34. T. Chivers, M. Krahn, G. Schatte, M. Parvez, Inorg. Chem. 42, 3994–4005 (2003)

    Article  CAS  Google Scholar 

  35. G.M. Sheldrick, Acta Cryst. Sect. C 71, 3–8 (2015)

    Article  Google Scholar 

  36. L. Palatinus, G. Chapuis, J. Appl. Crystallogr. 40, 786–790 (2007)

    Article  CAS  Google Scholar 

  37. V. Petříček, M. Dušek, L. Palatinus, Z. Kristallogr. 229, 345–352 (2014)

    Google Scholar 

  38. K. Gholivand, S. Farshadian, Z. Hosseini, J. Organomet. Chem. 696, 4298–4308 (2012)

    Article  CAS  Google Scholar 

  39. J.J. McKinnon, M.A. Spackman, A.S. Mitchell, Acta Cryst. Sect. B 60, 627–668 (2004)

    Article  Google Scholar 

  40. M.A. Spackman, D. Jayatilaka, CrystEngComm 11, 19–32 (2009)

    Article  CAS  Google Scholar 

  41. J.J. McKinnon, D. Jayatilaka, M.A. Spackman, Chem. Commun. 3814–3816 (2007)

  42. M.A. Spackman, J.J. McKinnon, CrystEngComm 4, 378–392 (2002)

    Article  CAS  Google Scholar 

  43. S.K. Wolff, D.J. Grimwood, J.J. McKinnon, M.J. Turner, D. Jayatilaka, M.A. Spackman, CrystalExplorer version 3.1, 2013 (University of Western Australia: Perth)

  44. G.R. Desiraju, T. Steiner, The Weak Hydrogen Bond (Oxford University Press, Oxford, 1999)

    Google Scholar 

Download references

Acknowledgments

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged. Crystallography experiments have been supported by the FriMat, the University of Fribourg for structure (I) and by the project 14-03276S of the Czech Science Foundation for structure (II).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Pourayoubi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 178 kb)

Supplementary material 2 (PDF 140 kb)

Appendix A. Supplementary data

Appendix A. Supplementary data

CCDC numbers of (I) and (II) are 1024228 and 1037302. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033, or e-mail: deposit@ccdc.cam.ac.uk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourayoubi, M., Saneei, A., Dušek, M. et al. Two new organotin(IV)-phosphoryl complexes: crystal structure and Hirshfeld surface analysis. J IRAN CHEM SOC 12, 2093–2103 (2015). https://doi.org/10.1007/s13738-015-0686-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-015-0686-9

Keywords

Navigation