Abstract
In this study, the dispersion mechanism of aggregated carbon nanotubes (CNTs) using Triton X-100 surfactant under various concentrations is investigated with and without water molecules via molecular dynamics simulation. The obtained results showed that because of interaction between water molecules and hydrophilic segments of surfactant, water molecules play a significant role in the manner of adsorption of the surfactant on the CNT surface. In the presence of water molecules, the surfactant molecules are not able to wrap the CNTs, and they are located in the neighborhood of the CNTs. The results suggested that the creation of space between two CNTs in the absence of the surfactant is performed slowly, while, in the presence of the surfactant molecules, the creation of space between two CNTs which leads to the dispersion of the CNTs is remarkably rapid. The surfactant molecules cause to introduce more numbers of water molecules in the vicinity of and between the CNTs, and with the increasing radial distances between two CNTs, the number of water molecules is rapidly increased. The interfacial angle between two CNTs, surfactant gyration radius, and diagrams of radial distribution function between water molecules, the CNTs, and the surfactant molecules were calculated for a better description of dispersion mechanism of the CNTs by the surfactant and water molecules.
This is a preview of subscription content, access via your institution.














References
J.Y. Huang, S. Chen, Z.Q. Wang, K. Kempa, Y.M. Wang, S.H. Jo, G. Chen, M.S. Drselhaus, Z.F. Ren, Nature 439, 281 (2006)
K.D. Ausman, R. Piner, O. Lourie, R.S. Ruoff, M. Korobov, J. Phys. Chem. B 104, 8911 (2000)
M.J. O’Connell, P. Boul, L.M. Ericson, C. Huffman, Y.H. Wang, E. Haroz, C. Kuper, J. Tour, K.D. Ausman, R.E. Smalley, Chem. Phys. Lett. 342, 265 (2001)
L.A. Girifalco, M. Hodak, R.S. Lee, Phys. Rev. B 62, 13104 (2000)
V.A. Davis, A.N.G. Parra-Vasquez, M.J. Green, P.K. Rai, N. Behabtu, V. Prieto, R.D. Booker, J. Schmidt, E. Kesselman, W. Zhou, H. Fan, W.W Adams, R.H. Hauge, J.E. Fischer, Y. Cohen, Y.Talmon, R.E Smalley, M. Pasquali, Nat. Nanotechnol. 4, 830 (2009)
A.N.G. Parra-Vasquez, N. Behabtu, M.J. Green, C.L. Pint, C.C. Young, J. Schmidt, E. Kesselman, A. Goyal, P.M. Ajayan, Y. Cohen, Y. Talmon, R.H. Hauge, M. Pasquali, ACS Nano 4, 3969 (2010)
S. Ramesh, L.M. Ericson, V.A. Davis, R.K. Saini, C. Kittrell, M. Pasquali, W.E. Billups, W.W. Adams, R.H. Hauge, R.E. Smalley, J. Phys. Chem. B 108, 8794 (2004)
S.D. Bergin, Z. Sun, P. Streich, J. Hamilton, J.N. Coleman, J. Phys. Chem. C 114, 231 (2010)
J. Zhao, H. Park, J. Han, J.P. Lu, J. Phys. Chem. B 108, 4227 (2004)
N. Grossiord, P. van der Schoot, J. Meuldijk, C.E. Koning, Langmuir 23, 3646 (2007)
T.J. McDonald, C. Engtrakul, M. Jones, G. Rumbles, M.J. Heben, J. Phys. Chem. B 110, 25339 (2006)
T. Okazaki, T. Saito, K. Matsuura, S. Ohshima, M. Yumura, S. Iijima, Nano Lett. 5, 2618 (2005)
V.A. Sinani, M.K. Gheith, A.A. Yaroslavov, A.A. Rakhnyanskaya, K. Sun, A.A. Mamedov, J.P. Wicksted, N.A. Kotov, J. Am. Chem. Soc. 127, 3463 (2005)
A. Nish, J.Y. Hwang, J. Doig, R. Nicholas, J. Nat. Nanotechnol. 2, 640 (2007)
X. Xin, G. Xu, T. Zhao, Y. Zhu, X. Shi, H. Gong, Z. Zhang, J. Phys. Chem. C 112, 16377 (2008)
M. Zheng, A. Jagota, E.D. Semke, B.A. Diner, R.S. McLean, S.R Lustig, R.E. Richardson, N.G. Tassi, Nat. Mater. 2, 338 (2003)
X. Tu, S. Manohar, A. Jagota, M. Zheng, Nature 460, 250 (2009)
S.M. Fatemi, M. Foroutan, J. Nanostructure Chem. (2015). doi:10.1007/s40097-015-0155-0
M.S. Arnold, M.O. Guler, M.C. Hersam, S.I. Stupp, Langmuir 21, 4705 (2005)
L.S. Witus, J.D.R. Rocha, V.M. Yuwono, S.E. Paramonov, R.B. Weisman, J.D. Hartgerink, J. Mater. Chem. 17, 1909 (2007)
A. Ortiz-Acevedo, H. Xie, V. Zorbas, W.M. Sampson, A.B. Dalton, R.H. Baughman, R.K. Draper, I.H. Musselman, G.R. Dieckmann, J. Am. Chem. Soc. 127, 9512 (2005)
M.F. Islam, E. Rojas, D.M. Bergey, A.T. Johnson, A.G. Yodh, Nano Lett. 3, 269 (2003)
L. Vaisman, H.D. Wagner, G. Marom, Adv. Colloid Interface Sci. 128, 37 (2006)
O. Matarredona, H. Rhoads, Z. Li, J.H. Harwell, L. Balzano, D.E. Resasco, J. Phys. Chem. B 107, 13357 (2003)
M. Suttipong, N.R. Tummala, B. Kitiyanan, A. Striolo, J. Phys. Chem. C 115, 17286 (2011)
S. Obata, K. Honda, J. Phys. Chem. C 115, 19659 (2011)
E.J.F. Carvalho, M.C. dos Santos, ACS Nano 4, 765 (2010)
M.S. Arnold, A.A. Green, J.F. Hulvat, S.I. Stupp, M.C. Hersam, Nat. Nanotech. 1, 60 (2006)
R. Rastogi, R. Kaushal, S.K. Tripathi, A.L. Sharma, I. Kaur, L.M. Bharadwaj, J. Colloid Interface Sci. 328, 421 (2008)
H. Wang, W. Zhou, D.L. Ho, K.I. Winey, J.E. Fischer, C.J. Glinka, E.K. Hobbie, Nano Lett. 4, 1789 (2004)
P. Ren, J.W. Ponder, J. Phys. Chem. B 107, 5933 (2003)
W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, K.M. Merz, D.M. Ferguson, D.C. Spellmeyer, T. Fox, J.W. Caldwell, P.A. Kollman, J. Am. Chem. Soc. 117, 5179 (1995)
S.M. Fatemi, M. Foroutan, J. Chem. Theory Comput. 13, 1450063 (2014)
W.L. Jorgensen, J. Chandreskhar, J.D. Madura, R.W. Impey, M.L. Klein, J. Chem. Phys. 79, 926 (1982)
N.M. Uddin, F.M. Capaldi, B. Farouk, Comput. Mater. Sci. 53, 133 (2012)
S.M. Fatemi, M. Foroutan, J. Colloid Sci. Biotech. 2, 41 (2013)
S.M. Fatemi, M. Foroutan, Adv. Sci. Eng. Med. 6, 583 (2014)
R.J. Chen, Y.D. Zhang, H. Wang, J. Dai, Am. Chem. Soc. 123, 3838 (2001)
Acknowledgments
The authors acknowledge the support by Iran National Science Foundation through grant #91058102.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Fatemi, S.M., Foroutan, M. Study of dispersion of carbon nanotubes by Triton X-100 surfactant using molecular dynamics simulation. J IRAN CHEM SOC 12, 1905–1913 (2015). https://doi.org/10.1007/s13738-015-0665-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13738-015-0665-1
Keywords
- Aggregated carbon nanotube
- Triton X-100 surfactant
- Dispersion
- Interfacial angle
- Radial distribution function