Advertisement

Journal of the Iranian Chemical Society

, Volume 12, Issue 11, pp 1905–1913 | Cite as

Study of dispersion of carbon nanotubes by Triton X-100 surfactant using molecular dynamics simulation

  • S. Mahmood Fatemi
  • Masumeh ForoutanEmail author
Original Paper

Abstract

In this study, the dispersion mechanism of aggregated carbon nanotubes (CNTs) using Triton X-100 surfactant under various concentrations is investigated with and without water molecules via molecular dynamics simulation. The obtained results showed that because of interaction between water molecules and hydrophilic segments of surfactant, water molecules play a significant role in the manner of adsorption of the surfactant on the CNT surface. In the presence of water molecules, the surfactant molecules are not able to wrap the CNTs, and they are located in the neighborhood of the CNTs. The results suggested that the creation of space between two CNTs in the absence of the surfactant is performed slowly, while, in the presence of the surfactant molecules, the creation of space between two CNTs which leads to the dispersion of the CNTs is remarkably rapid. The surfactant molecules cause to introduce more numbers of water molecules in the vicinity of and between the CNTs, and with the increasing radial distances between two CNTs, the number of water molecules is rapidly increased. The interfacial angle between two CNTs, surfactant gyration radius, and diagrams of radial distribution function between water molecules, the CNTs, and the surfactant molecules were calculated for a better description of dispersion mechanism of the CNTs by the surfactant and water molecules.

Keywords

Aggregated carbon nanotube Triton X-100 surfactant Dispersion Interfacial angle Radial distribution function 

Notes

Acknowledgments

The authors acknowledge the support by Iran National Science Foundation through grant #91058102.

Supplementary material

13738_2015_665_MOESM1_ESM.docx (180 kb)
Supplementary material 1 (docx 179 kb)

References

  1. 1.
    J.Y. Huang, S. Chen, Z.Q. Wang, K. Kempa, Y.M. Wang, S.H. Jo, G. Chen, M.S. Drselhaus, Z.F. Ren, Nature 439, 281 (2006)CrossRefGoogle Scholar
  2. 2.
    K.D. Ausman, R. Piner, O. Lourie, R.S. Ruoff, M. Korobov, J. Phys. Chem. B 104, 8911 (2000)CrossRefGoogle Scholar
  3. 3.
    M.J. O’Connell, P. Boul, L.M. Ericson, C. Huffman, Y.H. Wang, E. Haroz, C. Kuper, J. Tour, K.D. Ausman, R.E. Smalley, Chem. Phys. Lett. 342, 265 (2001)CrossRefGoogle Scholar
  4. 4.
    L.A. Girifalco, M. Hodak, R.S. Lee, Phys. Rev. B 62, 13104 (2000)CrossRefGoogle Scholar
  5. 5.
    V.A. Davis, A.N.G. Parra-Vasquez, M.J. Green, P.K. Rai, N. Behabtu, V. Prieto, R.D. Booker, J. Schmidt, E. Kesselman, W. Zhou, H. Fan, W.W Adams, R.H. Hauge, J.E. Fischer, Y. Cohen, Y.Talmon, R.E Smalley, M. Pasquali, Nat. Nanotechnol. 4, 830 (2009)Google Scholar
  6. 6.
    A.N.G. Parra-Vasquez, N. Behabtu, M.J. Green, C.L. Pint, C.C. Young, J. Schmidt, E. Kesselman, A. Goyal, P.M. Ajayan, Y. Cohen, Y. Talmon, R.H. Hauge, M. Pasquali, ACS Nano 4, 3969 (2010)CrossRefGoogle Scholar
  7. 7.
    S. Ramesh, L.M. Ericson, V.A. Davis, R.K. Saini, C. Kittrell, M. Pasquali, W.E. Billups, W.W. Adams, R.H. Hauge, R.E. Smalley, J. Phys. Chem. B 108, 8794 (2004)CrossRefGoogle Scholar
  8. 8.
    S.D. Bergin, Z. Sun, P. Streich, J. Hamilton, J.N. Coleman, J. Phys. Chem. C 114, 231 (2010)CrossRefGoogle Scholar
  9. 9.
    J. Zhao, H. Park, J. Han, J.P. Lu, J. Phys. Chem. B 108, 4227 (2004)CrossRefGoogle Scholar
  10. 10.
    N. Grossiord, P. van der Schoot, J. Meuldijk, C.E. Koning, Langmuir 23, 3646 (2007)CrossRefGoogle Scholar
  11. 11.
    T.J. McDonald, C. Engtrakul, M. Jones, G. Rumbles, M.J. Heben, J. Phys. Chem. B 110, 25339 (2006)CrossRefGoogle Scholar
  12. 12.
    T. Okazaki, T. Saito, K. Matsuura, S. Ohshima, M. Yumura, S. Iijima, Nano Lett. 5, 2618 (2005)CrossRefGoogle Scholar
  13. 13.
    V.A. Sinani, M.K. Gheith, A.A. Yaroslavov, A.A. Rakhnyanskaya, K. Sun, A.A. Mamedov, J.P. Wicksted, N.A. Kotov, J. Am. Chem. Soc. 127, 3463 (2005)CrossRefGoogle Scholar
  14. 14.
    A. Nish, J.Y. Hwang, J. Doig, R. Nicholas, J. Nat. Nanotechnol. 2, 640 (2007)CrossRefGoogle Scholar
  15. 15.
    X. Xin, G. Xu, T. Zhao, Y. Zhu, X. Shi, H. Gong, Z. Zhang, J. Phys. Chem. C 112, 16377 (2008)CrossRefGoogle Scholar
  16. 16.
    M. Zheng, A. Jagota, E.D. Semke, B.A. Diner, R.S. McLean, S.R Lustig, R.E. Richardson, N.G. Tassi, Nat. Mater. 2, 338 (2003)Google Scholar
  17. 17.
    X. Tu, S. Manohar, A. Jagota, M. Zheng, Nature 460, 250 (2009)CrossRefGoogle Scholar
  18. 18.
    S.M. Fatemi, M. Foroutan, J. Nanostructure Chem. (2015). doi: 10.1007/s40097-015-0155-0 Google Scholar
  19. 19.
    M.S. Arnold, M.O. Guler, M.C. Hersam, S.I. Stupp, Langmuir 21, 4705 (2005)CrossRefGoogle Scholar
  20. 20.
    L.S. Witus, J.D.R. Rocha, V.M. Yuwono, S.E. Paramonov, R.B. Weisman, J.D. Hartgerink, J. Mater. Chem. 17, 1909 (2007)CrossRefGoogle Scholar
  21. 21.
    A. Ortiz-Acevedo, H. Xie, V. Zorbas, W.M. Sampson, A.B. Dalton, R.H. Baughman, R.K. Draper, I.H. Musselman, G.R. Dieckmann, J. Am. Chem. Soc. 127, 9512 (2005)CrossRefGoogle Scholar
  22. 22.
    M.F. Islam, E. Rojas, D.M. Bergey, A.T. Johnson, A.G. Yodh, Nano Lett. 3, 269 (2003)CrossRefGoogle Scholar
  23. 23.
    L. Vaisman, H.D. Wagner, G. Marom, Adv. Colloid Interface Sci. 128, 37 (2006)CrossRefGoogle Scholar
  24. 24.
    O. Matarredona, H. Rhoads, Z. Li, J.H. Harwell, L. Balzano, D.E. Resasco, J. Phys. Chem. B 107, 13357 (2003)CrossRefGoogle Scholar
  25. 25.
    M. Suttipong, N.R. Tummala, B. Kitiyanan, A. Striolo, J. Phys. Chem. C 115, 17286 (2011)CrossRefGoogle Scholar
  26. 26.
    S. Obata, K. Honda, J. Phys. Chem. C 115, 19659 (2011)CrossRefGoogle Scholar
  27. 27.
    E.J.F. Carvalho, M.C. dos Santos, ACS Nano 4, 765 (2010)CrossRefGoogle Scholar
  28. 28.
    M.S. Arnold, A.A. Green, J.F. Hulvat, S.I. Stupp, M.C. Hersam, Nat. Nanotech. 1, 60 (2006)CrossRefGoogle Scholar
  29. 29.
    R. Rastogi, R. Kaushal, S.K. Tripathi, A.L. Sharma, I. Kaur, L.M. Bharadwaj, J. Colloid Interface Sci. 328, 421 (2008)CrossRefGoogle Scholar
  30. 30.
    H. Wang, W. Zhou, D.L. Ho, K.I. Winey, J.E. Fischer, C.J. Glinka, E.K. Hobbie, Nano Lett. 4, 1789 (2004)CrossRefGoogle Scholar
  31. 31.
    P. Ren, J.W. Ponder, J. Phys. Chem. B 107, 5933 (2003)CrossRefGoogle Scholar
  32. 32.
    W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, K.M. Merz, D.M. Ferguson, D.C. Spellmeyer, T. Fox, J.W. Caldwell, P.A. Kollman, J. Am. Chem. Soc. 117, 5179 (1995)CrossRefGoogle Scholar
  33. 33.
    S.M. Fatemi, M. Foroutan, J. Chem. Theory Comput. 13, 1450063 (2014)CrossRefGoogle Scholar
  34. 34.
    W.L. Jorgensen, J. Chandreskhar, J.D. Madura, R.W. Impey, M.L. Klein, J. Chem. Phys. 79, 926 (1982)CrossRefGoogle Scholar
  35. 35.
    N.M. Uddin, F.M. Capaldi, B. Farouk, Comput. Mater. Sci. 53, 133 (2012)CrossRefGoogle Scholar
  36. 36.
    S.M. Fatemi, M. Foroutan, J. Colloid Sci. Biotech. 2, 41 (2013)CrossRefGoogle Scholar
  37. 37.
    S.M. Fatemi, M. Foroutan, Adv. Sci. Eng. Med. 6, 583 (2014)CrossRefGoogle Scholar
  38. 38.
    R.J. Chen, Y.D. Zhang, H. Wang, J. Dai, Am. Chem. Soc. 123, 3838 (2001)Google Scholar

Copyright information

© Iranian Chemical Society 2015

Authors and Affiliations

  1. 1.Department of Physical Chemistry, School of Chemistry, College of ScienceUniversity of TehranTehranIran

Personalised recommendations