Skip to main content
Log in

Conversion of natural gas into the gaseous constituents and nano-graphene in the presence of chlorine as homogeneous promoter by DC-spark discharge

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

This paper describes the results of an experimental study on the usage of high-frequency, high-voltage, low direct current spark discharge plasma to examine the catalytic role of chlorine (Cl2) gas on the selective and rapid conversion of light hydrocarbons in the natural gas stream. Our results indicate that the cold DC-spark discharge method in the presence of small amount of chlorine gas is a useful method for decomposition of methane into gaseous constituents and carbon at relatively low power consumption (10 W). Presence of Cl2 boosts the conversion rate of methane (the main constituent of natural gas) to C2 hydrocarbons, as well as formation of nano-graphene, and apparently, molecular hydrogen. Our results indicate that conversion of methane increases by a factor of ~3 in the presence of 6–8 % of chlorine gas. This method is adopted as an efficient and selective routine for the formation of nano-carbons such as graphene using natural gas along with a trace amount of Cl2 in an inert atmosphere such as argon bath gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Koga, S. Tsuneizumi, M. Tabata, H. Mizutani, H. Yamamoto, T.Amari. Mitsubishi Heavy Industries, Ltd. Technical Review. 44 (2), (2007)

  2. Z. Liu, Z. Jiang, B. Fei, X. Liu, Bio. Resour. 8, 5014 (2013)

    Google Scholar 

  3. T.V. Choudhary, E. Aksoylu, D.W. Goodman, Catal. Rev. 45, 151–203 (2003)

    Article  CAS  Google Scholar 

  4. Y.-G. Cho, K.-H. Choi, Y.-R. Kim, S.-H. Lee, Bull. Kor. Chem. Soc. 29, 1609 (2008)

    Article  CAS  Google Scholar 

  5. H. Shuanghui, W. Baowei, L. Yijun, Y. Wenjuan, Plasma. Sci. Technol. 15, 555 (2013)

    Article  Google Scholar 

  6. B. Wang, W. Yan, W. Ge, X.J. Duan, Energy. Chem. 22, 876–882 (2013)

    Article  CAS  Google Scholar 

  7. T. Kolb, J.H. Voigt, K.-H. Gericke, Plasma. Chem. Plasma. Process. 33, 631–646 (2013)

    Article  CAS  Google Scholar 

  8. Q. Liu, H. Zheng, F. Pan, G. Pan, R. Yang. ASME, Power Conference, Boston, Massachusetts, USA, July 29–August 1 2013

  9. T. Nozaki, N. Mute, S. Kado, K. Okazaki, Catal. Today. 89, 57–65 (2004)

    Article  CAS  Google Scholar 

  10. I.E. Makerov, A.V. Ponomarev, B.G. Ershov, High. Energy. Chem. 4, 55 (2007)

    Article  Google Scholar 

  11. T. Hammer, T. Kappes, M. Baldauf, Catal. Today. 89, 5 (2004)

    Article  CAS  Google Scholar 

  12. H.K. Song, J.-W. Choi, S.H. Yue, H. Lee, B.-K. Na, Catal. Today. 89, 27 (2004)

    Article  CAS  Google Scholar 

  13. W. Kangjun, L. I. LI Xiaosong, Z. H. U. Aimin. PST. 13, pp 77–81(2011)

  14. X.-S. Li, C.-K. Lin, C. Shi, Y. Xu, Y.-N. Wang, A.-M. Zhu, J. Phys. D Appl. Phys. 41, 175203 (2008)

    Article  Google Scholar 

  15. H. Le, L.L. Lobban, R.G. Mallinson, Pap. Am. Chem. Soc. Div. Fuel. Chem. 49, 173 (2004)

    CAS  Google Scholar 

  16. C. Liu, A. Marafee, B. Hill, G. Xu, R. Mallinson, L.L. Lobban, Ind. Eng. Chem. Res. 35, 3295 (1996)

    Article  CAS  Google Scholar 

  17. S. Kado, K. Urasaki, Y. Sekine, Fuel. Chem. Div. Prepr. 47, 327 (2002)

    Google Scholar 

  18. Y. Sekine, M. Haraguchi, M. Tomioka, M. Matsukata, E. Kikuchi, J. Phys. Chem. A. 114, 3824–3833 (2010)

    Article  CAS  Google Scholar 

  19. W. Kangjun, L. Xiaosong, Z. Aimin, Plasma. Sci. Technol. 13, 77 (2011)

    Article  Google Scholar 

  20. N. Chintala, R. Meyer, A. Hicks, A. Bao, J. W. Rich, W. R. Lempert, I. V. Adamovich. J. Propuls. Power. 21, 583(2005)

  21. J. Kriegseis, B. Möller, S. Grundmann, C. Tropea, J. Electrost. 69, 302 (2011)

    Article  Google Scholar 

  22. X.-S. Li, A.-M. Zhu, K.-J. Wang, Y. Xu, Z.-M. Song, Catal. Today. 98, 617 (2004)

    Article  CAS  Google Scholar 

  23. S. Kado, Y. Sekine, T. Nozaki, K. Okazaki, Catal. Today. 89, 47 (2004)

    Article  CAS  Google Scholar 

  24. A. Kirubakaran, S. Jain, R.K. Nema, Renew. Sustain. Energy Rev. 13, 2430–2440 (2009)

    Article  CAS  Google Scholar 

  25. A.I. Pushkarev, A.-M. Zhub, X.-S. Li, R.V. Sazonov, High. Energy Chem. 43, 156–162 (2009)

    Article  CAS  Google Scholar 

  26. R.-F. Horng, Y.-P. Chang, H.-H. Huang, M.-P. Lai, Fuel 86, 81–89 (2007)

    Article  CAS  Google Scholar 

  27. M. Matsushima, G. Kalita, K. Kato, M. Noda, H. Uchida, K. Wakita, M. Umeno, M. Tanemura, J. Nanosci. Nanotechnol. 14, 2614–2619 (2014). (references there in)

    Article  CAS  Google Scholar 

  28. For instance see the following reports: http://www.corrosion-doctors.org/Pipeline/Carlsbad-explosion.htm, http://www.gascape.org/, http://www.piedmontng.com/files/pdfs/safety/Material Safety Data Sheet_92404.pdf

  29. M.A. Malik, F. Lian-Mei, J.J. Xuan-Zhen, Nat. Gas. Chem. 8, 9–17 (1999)

    CAS  Google Scholar 

  30. M.M. Moshrefi, F. Rashidi, H.R. Bozorgzadeh, S.M. Zekordi, Plasma. Chem. Plasma. Process. 32, 1157–1168 (2012)

    Article  CAS  Google Scholar 

  31. S. Kado, Y. Sekine, K. Urasaki, K. Okazaki, T. Nozaki. Stud. Surf. Sci. Catal. 147, 577–658(2004)

    Article  CAS  Google Scholar 

  32. R-F. Horng, Y-P. Chang, H-H. Huang, M-P. Ming-Pin Lai. Fuel. 86, 81–89(2007)

    Article  CAS  Google Scholar 

  33. G. Musa, N. Ekem, T. Akan, S. Pat, M.Z. Balbag, M.I. Cenik, R. Vladoiu, M. Tanisli, O. Ozen, Phys. Stat. Sol. c. 4, 521–523 (2007)

    Article  CAS  Google Scholar 

  34. A.N. Obraztsov, A.A. Zolotukhin, A.O. Ustinov, A.P. Volkov, Y. Svirkob, K. Jefimovs, Diam. Relat. Mater. 12, 917–920 (2003)

    Article  CAS  Google Scholar 

  35. M. Okumoto, A. Mizuno, Catal. Today. 71, 211–217 (2001)

    Article  CAS  Google Scholar 

  36. V.N. Rozanov, Y.A. Treger, Kinet. Catal. 51, 635–643 (2010)

    Article  CAS  Google Scholar 

  37. Y.D. Gao, R.G. MacDonald, J. Phys. Chem. A 110, 977–989 (2006)

    Article  CAS  Google Scholar 

  38. C. Murray, B. Retail, A.J. Orr-Ewing, Chem. Phys. 301, 239–249 (2004). and references therein

    Article  CAS  Google Scholar 

  39. N. Choi, M.J. Pilling, P.W. Seakins, L. Wang, Phys. Chem. Chem. Phys. 8, 2172–2178 (2006). and references therein

    Article  CAS  Google Scholar 

  40. K. Takahashi, O. Yamamot, T. Inomata, Proc. Combust. Inst. 29, 2447–2453 (2002). (references there in)

    Article  CAS  Google Scholar 

  41. D.W. Chang, E.K. Lee, E.Y. Park, H. Yu, H.-J. Choi, I.-Y. Jeon, G.-J. Sohn, D. Shin, N. Park, J.H. Oh, L. Dai, J.-B. Baek, J. Am. Chem. Soc. 135, 8981 (2013)

    Article  CAS  Google Scholar 

  42. A.V. Kirikov, V.V. Ryzhov, A.I. Suslov, Tech. Phys. Lett. 25, 794–795 (1999)

    Article  CAS  Google Scholar 

  43. Z. Zhao, D.T. Huskey, K.J. Olsen, J.M. Nicovich, M.L. McKee, P.H. Wine, Phys. Chem. Chem. Phys. 9, 4383–4394 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from the Research Council of Shiraz University is acknowledged. SHM would like to thank the Department of Chemistry at the SQU for its hospitality during the preparation of this manuscript.  

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hosein Mousavipour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavipour, S.H., Doroodmand, M.M., Zarin Hamedani, S.M.A. et al. Conversion of natural gas into the gaseous constituents and nano-graphene in the presence of chlorine as homogeneous promoter by DC-spark discharge. J IRAN CHEM SOC 12, 1303–1311 (2015). https://doi.org/10.1007/s13738-015-0595-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-015-0595-y

Keywords

Navigation