Sol–gel derived silica thin films immobilized with 1,10-phenanthroline and their binding activity toward iron(II)

Abstract

Transparent sol–gel thin films immobilized with 1,10-phenanthroline were prepared via the acid-catalyzed sol–gel reaction of tetraethylorthosilicate (TEOS) in the presence of phen. Three surfactants that include cationic cetyl trimethyl ammonium bromide (CTAB), anionic sodium dodecyl sulfate (SDS) and non-ionic Triton X-100 (TX-100) were tested for the improvement of the host material mesostructure, increasing its porosity and good accommodation of the phen within the silica matrix. The immobilized phen thin films showed similar behavior as their free counterpart in aqueous solution. The immobilized phen complex retained its activity toward Fe2+ metal ions by immobilization and produced a stable complex without any shift in the wavelength of Vis absorption spectra comparing with its free counterpart. Different parameters including concentrations of phen, Fe2+ and surfactant, type of surfactant, lifetime and number of measurements were investigated. The phen thin film sensor showed high sensitivity, chemical stability, good reproducibility and long lifetime behavior. The immobilized phen thin films were used for quantification of iron(II) in versatile aqueous samples. The polarized light microscopy indicated that the phen molecules were distributed uniformly within the host silica network.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. 1.

    W. Jin, J.D. Brennan, Anal. Chim. Acta 461, 1 (2002)

    Article  CAS  Google Scholar 

  2. 2.

    C.J. Brinker, G.W. Scherer, Sol–Gel Science (Academic Press, New York, 1990)

    Google Scholar 

  3. 3.

    J. Livage, T. Coradin, C. Roux, J. Phys. Condens. Matter 13, R673 (2001)

    Article  CAS  Google Scholar 

  4. 4.

    I. Gill, A. Ballesteros, Trends Biotechnol. 18, 282 (2000)

    Article  CAS  Google Scholar 

  5. 5.

    S. Sakka, Handbook of Sol-Gel Science and Technology Processing, Characterization and Applications (Kluwer, USA, 2005)

    Google Scholar 

  6. 6.

    S.J. Darzi, J. Iran. Cem. Soc. 11(5), 1363 (2014)

    Article  Google Scholar 

  7. 7.

    X.H. Chen, Y.B. Hu, G.S. Wilson, Biosens. Bioelectron. 17, 1005 (2002)

    Article  CAS  Google Scholar 

  8. 8.

    R. Zusman, C. Rottman, M. Ottolenghi, D. Avnir, J. Non-Cryst. Solids 122, 107 (1990)

    Article  CAS  Google Scholar 

  9. 9.

    L.L. Hench, I.K. West, Chem. Rev. 90, 33 (1990)

    Article  CAS  Google Scholar 

  10. 10.

    L.C. Klein, B. Dun, In: Sol-Gel Technology, (eds) (Noyes Publications, Park Ridge, NJ, 1988)

  11. 11.

    H. Boettcher, J. Prakt. Chem. 342 (2000)

  12. 12.

    J.D. Wright, N.A.J.M. Sommerdijk, Sol-Gel Materials: Chemistry and Applications (Gordon and Breach Science Publishers, Amsterdam, 2001)

    Google Scholar 

  13. 13.

    J. Samuel, A. Strinkoviki, S. Shalom, K. Lieberman, M. Ottolenghi, D. Avnir, A. Lewis, Mater. Lett. 21, 431 (1994)

    Article  CAS  Google Scholar 

  14. 14.

    N.M. El-Ashgar, A.I. El-Basioni, I.M. El-Nahhal, S.M. Zourob, T.M. El-Agez, S.A. Taya, ISRN Anal. Chem. (2012). doi:10.5402/2012/604389

    Google Scholar 

  15. 15.

    M.J.P. Leiner, O.S. Wolfbeisin, O.S. Wolfbeis, In: Fiber Optic Chemical Sensors and Biochemical Sensors, (eds) (CRC Press, Boca Raton, 1991), pp. 359

  16. 16.

    O.S. Wolfbeis, N.V.T. Rodriguez, Werner Mikrokim Acta 108, 133 (1992)

    Article  CAS  Google Scholar 

  17. 17.

    L.A. Saari, W.R. Seitz, Anal. Chem. 54, 821 (1982)

  18. 18.

    L. Lobnik, I. Oehme, I. Murkoic, O.S. Wolfbeis, Anal. Chim. Acta 367, 159 (1998)

    Article  CAS  Google Scholar 

  19. 19.

    L.M. Ellerby, C.R. Nishida, F. Nishida, S.A. Yamanakas, B. Dunn, S.J. Valentine, J.I. Zink, Science 255, 1113 (1992)

    Article  CAS  Google Scholar 

  20. 20.

    G. Wirnsberger, P. Yang, B.J. Scott, B.F. Chemelka, G. Stuky, Spectrochim. Acta, Part A 57, 2049 (2001)

    Article  CAS  Google Scholar 

  21. 21.

    I.M. El-Nahhal, S.M. Zourab, F.S. Kodeh, A. Al-Bawab, Int. J. Anal. Chem. 90, 644 (2010)

    Article  CAS  Google Scholar 

  22. 22.

    G.G. Guilbality, Analytical Uses of Immobilized Enzymes (Marcel Dekker, New York, 1989), p. 77

    Google Scholar 

  23. 23.

    N.D. Irhand, T. Elmali, Nebahat, Turk. J. Chem. 27 (2003)

  24. 24.

    M. Pagliaro, R. Ciriminna, G. Palmisano, Chem. Soc. Rev. 36 (2007)

  25. 25.

    N.M. Yoshioka, H. Inoue, Transit. Met. Chem. 24 (1999)

  26. 26.

    R. John, Healthy, The Scientifically Proven Secrets of the World’s Healthiest and Longest-Lived Peoples, 1st edn. (Ballantine Books, USA, 2007)

    Google Scholar 

  27. 27.

    WHO, Guidelines for Drinking-Water Quality, 2nd edn. vol 2. Health Criteria and Other Supporting Information (World Health Organization, Geneva, 1996)

  28. 28.

    O. Lev, Analusis 20, 543 (1992)

    CAS  Google Scholar 

  29. 29.

    M.J. Paterson, B. Ben-Nissan, Surf. Coat. Technol. 86(1), 153 (1996)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Islamic University of Gaza for financial support and Al-Azhar University of Gaza for technical support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nizam M. El-Ashgar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

El-Ashgar, N.M., Bolbol, H.Z. Sol–gel derived silica thin films immobilized with 1,10-phenanthroline and their binding activity toward iron(II). J IRAN CHEM SOC 12, 791–799 (2015). https://doi.org/10.1007/s13738-014-0540-5

Download citation

Keywords

  • 1,10-Phenanthroline
  • Iron(II)
  • Iron(II) phen complex
  • Silica thin films