Skip to main content
Log in

Computational mechanistic investigation of the gas phase C2H4 + CO reaction on the singlet and triplet potential energy surfaces

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Reaction pathways of ethylene and carbon monoxide on the singlet and triplet potential energy surfaces (PESs) have been calculated at B3LYP/6-311++G (3df, 3dp), G3B3 and CCSD(T)//B3LYP levels. Reaction mechanisms have been investigated by analysis of various structures. Suggested reaction mechanisms reveal that 3P3(CH2CHCHO) and 3P4(CH3CCHO) are thermodynamically stable adducts with the negative value in Gibbs free energies on the triplet PES. In addition, results show that one intersystem crossing exists between triplet and singlet PESs, which are obtained by scanning of the C–C bond length in 1IN3 and 3IN7 species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Hua, B. Ruscic, B. Wang, Chem. Phys. 311, 335–341 (2005)

    Article  CAS  Google Scholar 

  2. G. McKay, Prog. Energy Combust. Sci. 3, 105–126 (1977)

    Article  CAS  Google Scholar 

  3. J.H. Knox, Combust. Flame 9, 297–310 (1965)

    Article  CAS  Google Scholar 

  4. T.M. Lenhardt, C.E. Mcdade, K.D. Bayes, J. Chem. Phys. 72, 304–310 (1980)

    Article  CAS  Google Scholar 

  5. R.P. Ruiz, K.D. Bayes, J. Phys. Chem. 88, 2592–2595 (1984)

    Article  CAS  Google Scholar 

  6. B. Du, W. Zhang, Computational and Theoretical Chemistry 991, 13–21 (2012)

    Article  CAS  Google Scholar 

  7. S.W. Benson, P.S. Nangia, Acc. Chem. Res. 12, 223–228 (1979)

    Article  CAS  Google Scholar 

  8. Assessment report on ethylene for developing ambient air quality objectives, http://www.gov.ab.ca/env/protenf/standards/index.html. Alberta Environ. 2003

  9. S. Sawada, T. Totsuka, Atmos. Environ. 20, 821–832 (1967)

    Article  Google Scholar 

  10. K. Wang, H. Li, J. Ecker, Plant Cell 14, 131–151 (2002)

    Google Scholar 

  11. Production: Growth is the Norm//Chemical and Engineering News, 2006, 84(28). http://pubs.acs.org/cen/coverstory/84/pdf/8428production.pdf

  12. OECD SIDS Initial assessment profile-ethylene, http://www.inchem.org/ documents/sids/sids/74851.pdf. Retrieved 2008

  13. A. Lifshitz, H. Ben-Hamou, J. Phys. Chem. 87, 1782 (1983)

    Article  CAS  Google Scholar 

  14. P.P. McClellan, Ind. Eng. Chem. 42, 2402–2407 (1950)

    Article  CAS  Google Scholar 

  15. http://webbook.nist.gov/cgi/cbook.cgi?ID=C74851&Units=SI&Mask=400# UV-Vis-Spec. Retrieved 2006

  16. P. Tikuisis, D.M. Kane, T.M. Mclellan, F. Buick, S.M. Fairburn, J. Appl. Physiol. 72, 1311–1319 (1992)

    CAS  Google Scholar 

  17. B. Weinstock, H. Niki, Science 176, 290–292 (1972)

    Article  CAS  Google Scholar 

  18. J.G. Lopez, C.L. Rasmussen, M.U. Alzueta, Y. Gao, P. Marshall, P. Glarborg, Proc. Combust. Inst. 32, 367–375 (2009)

    Article  CAS  Google Scholar 

  19. P. Dagaut, J.C. Boettner, M. Cathonnet, Int. J. Chem. Kinet. 22, 641–664 (1990)

    Article  CAS  Google Scholar 

  20. R.S. Zhu, J. Park, M.C. Lin, Chem. Phys. Letters 408, 25–30 (2005)

    Article  CAS  Google Scholar 

  21. T.L. Nguyen, J. Park, K. Lee, K. Song, J.R. Barker, J. Phys. Chem. A. 115, 4894–4901 (2011)

    Article  CAS  Google Scholar 

  22. A.D. Becke, A new mixing of Hartree–Fock and local density-functional theories. J. Chem. Phys. 98, 1372 (1993)

    Article  CAS  Google Scholar 

  23. M.J. Frisch, J.A. Pople, J.S. Binkley, J. Chem. Phys. 80, 3265 (1984)

    Article  CAS  Google Scholar 

  24. L.A. Curtiss, K. Raghavachari, P.C. Redfern, V. Rassolov, J.A. Pople, J. Chem. Phys. 109, 7764 (1998)

    Article  CAS  Google Scholar 

  25. A.G. Boboul, L.A. Curtiss, P.C. Redfern, K.J. Raghavachari, J. Chem. Phys. 110, 7650 (1999)

    Article  Google Scholar 

  26. J. Cizek, J. Chem. Phys. 45, 4256–4267 (1966)

    Article  CAS  Google Scholar 

  27. J.C. Rienstra-Kiracofe, W.D. Allen, H.F. Schaefer, J. Phys. Chem. A 104, 9823 (2000)

    Article  CAS  Google Scholar 

  28. D. Jayatilaka, T.J. Lee, J. Chem. Phys. 98, 9734 (1993)

    Article  CAS  Google Scholar 

  29. J. Peiro-Garcia, I. Nebot-Gil, Chem. Phys. Chem. 4, 843–847 (2003)

    Article  CAS  Google Scholar 

  30. J. Peiro-Garcia, I. Nebot-Gil, J. Comput. Chem. 24, 1657–1663 (2003)

    Article  CAS  Google Scholar 

  31. R.G. Parr, W. Yang, Density-functional theory of atoms and molecules (Oxford University Press, Oxford, 1989)

    Google Scholar 

  32. F. Biegler-Konig, J. Schoenbohm, AIM2000, 2.0 Ed. Buro fur Innovative Software, Bielefeld: Germany, 2002

  33. C. Gonzalez, H.B. Schlegel, J. Phys. Chem. 94, 5523 (1990)

    Article  CAS  Google Scholar 

  34. M.J. Frisch, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Jr. Montgomery, T. Vreven, K. N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H. P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople Gaussian 03, Revision B.03. (Gaussian, Inc., Pittsburgh, 2003)

  35. Y.N. Panchenko, V.I. Pupyshev, C.W. Bock, J. Mole. Struc. 550–551, 495–504 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Vahedpour.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karami, F., Vahedpour, M. Computational mechanistic investigation of the gas phase C2H4 + CO reaction on the singlet and triplet potential energy surfaces. J IRAN CHEM SOC 11, 781–790 (2014). https://doi.org/10.1007/s13738-013-0352-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-013-0352-z

Keywords

Navigation