Skip to main content
Log in

Computational study on fluorine atom reaction with silane molecule (SiH4)

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The fluorine atom’s reaction with silane molecule (SiH4) is investigated in this work. Two reaction channels which form SiH3+HF and SiH3F+H are discussed in the microscopic level. The analyses of transition states show that the SiH3+HF channel proceeds through a direct hydrogen abstract mechanism and the SiH3F+H channel could take place via the substitution mechanism. The energetic information of the potential energy surface has been obtained using high-level ab initio molecular orbital theory. A dual-level direct dynamics method is employed to calculate the rate constants of the title reaction. The rate constants of the hydrogen abstraction channel are much larger than the substitution channel. The calculated rate constants are in best agreement with available experimental result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M. Yasuda, Y. Onishi, M. Ueba, T. Miyai, A. Baba, J. Org. Chem. 66, 7741 (2001)

    Article  CAS  Google Scholar 

  2. S. Das, D. Addis, S. Zhou, K. Junge, M. Beller, J. Am. Chem. Soc. 132, 1770 (2010)

    Article  CAS  Google Scholar 

  3. F. Lehmann, M. Scobie, Synthesis 11, 1679 (2008)

    Google Scholar 

  4. Y. Kanazawa, H. Nishiyama, Synlett 19, 3343 (2006)

    Google Scholar 

  5. Y. Sumida, H. Yorimitsu, K. Oshima, J. Org. Chem. 74, 7986 (2009)

    Article  CAS  Google Scholar 

  6. H.A. Malik, G.J. Sormunen, J. Montgomery, J. Am. Chem. Soc. 132, 6304 (2010)

    Article  CAS  Google Scholar 

  7. K. Sa-Ei, J. Montgomery, Org. Lett. 8, 4441 (2006)

    Article  CAS  Google Scholar 

  8. K. Yacoubi, C. Azzaro-Pantel, J. Couderc, J. Electrochem. Soc. 146, 3018 (1999)

    Article  CAS  Google Scholar 

  9. A. Walkiewicz-Pietrzykowska, A.M. Wrobel, M. Kryszewski, Pol. J. Chem. 71, 1831 (1997)

    CAS  Google Scholar 

  10. R.T. Skodje, D. Skoouteris, D.E. Manolopoulos, S.H. Lee, F. Dong, K. Liu, J. Chem. Phys. 112, 4536 (2000)

    Article  CAS  Google Scholar 

  11. D.M. Neumark, A.M. Wodtke, G.N. Robinson, C.C. Hayden, Y.T. Lee, J. Chem. Phys. 82, 3045 (1985)

    Article  CAS  Google Scholar 

  12. M. Qiu, Z. Ren, L. Che, D. Dai, S.A. Harich, X. Wang, X. Yang, Chin. J. Chem. Phys. 20, 1 (2006)

    Google Scholar 

  13. M. Qiu, Z. Ren, L. Che et al., Science 311, 1440 (2006)

    Article  CAS  Google Scholar 

  14. W.W. Harper, S.A. Nizkorodov, D.J. Nesbitt, J. Chem. Phys. 113, 3670 (2000)

    Article  CAS  Google Scholar 

  15. W.W. Harper, S.A. Nizkorodov, D.J. Nesbitt, Chem. Phys. Let. 335, 381 (2001)

    Article  CAS  Google Scholar 

  16. J.J. Lin, J. Zhou, W. Shiu, K. Liu, Science 300, 966 (2003)

    Article  CAS  Google Scholar 

  17. J. Zhou, J.J. Lin, W. Shiu, S.C. Pu, K. Liu, J. Chem. Phys. 119, 4997 (2003)

    Article  CAS  Google Scholar 

  18. G.N. Robinson, R.E. Continetti, Y.T. Lee, J. Chem. Phys. 92, 275 (1990)

    Article  CAS  Google Scholar 

  19. Q. Ran, C.H. Yang, G. Shen, Y.T. Lee, X. Yang, J. Chem. Phys. 122, 044307 (2005)

    Article  Google Scholar 

  20. Q. Ran, C.H. Yang, G. Shen, Y.T. Lee, X. Yang, J. Chem. Phys. 121, 6302 (2004)

    Article  CAS  Google Scholar 

  21. W.H. Duewer, D.W. Setser, J. Chem. Phys. 58, 2310 (1973)

    Article  CAS  Google Scholar 

  22. D.J. Smith, D.W. Setser et al., J. Phys. Chem. 81, 898 (1977)

    Article  CAS  Google Scholar 

  23. K. Sato, H. Yamada, S. Iwabuchi, T. Hirano, H. Koinuma, J. Chem. Phys. 98, 2844 (1993)

    Article  CAS  Google Scholar 

  24. G.L. Shen, X.M. Yang, J.N. Shu, C.H. Yang, Y.T. Lee, J. Chem. Phys. 125, 133103 (2006)

    Article  Google Scholar 

  25. D.J. Smith, D.W. Setser et al., J. Phys. Chem. 81, 898 (1977)

    Article  CAS  Google Scholar 

  26. D.G. Truhlar, In The Reaction Path in Chemistry: Current Approaches and Perspectives (Kluwer, Dordrecht, 1995), p. 229

    Book  Google Scholar 

  27. D.G. Truhlar, B.C. Garrett, S.J. Klippenstein, J. Phys. Chem. 100, 12771 (1996)

    Article  CAS  Google Scholar 

  28. W.P. Hu, D.G. Truhlar, J. Am. Chem. Soc. 118, 860 (1996)

    Article  CAS  Google Scholar 

  29. D.G. Truhlar, B.C. Garrett, Acc. Chem. Res. 13, 440 (1980)

    Article  CAS  Google Scholar 

  30. D.G. Truhlar, B.C. Garrett, Annu. Rev. Phys. Chem. 35, 159 (1984)

    Article  CAS  Google Scholar 

  31. M.J. Frisch, G.W. Trucks et al., Gaussian 09, revision A.02. (Gaussian, Inc. Wallingford, 2009)

  32. A. Yu, H. Zhang, Comp. Theo. Chem. 1019, 101 (2013)

    Article  CAS  Google Scholar 

  33. A. Yu, H. Zhang, Mol. Phys. 10(1080/00268976), 817622 (2013)

    Google Scholar 

  34. W.J. Hehre, L. Radom, P.V.R. Schleyer, J.A. Pople, in Ab Initio Molecular Orbital Theory (Wiley, New York, 1986)

    Google Scholar 

  35. J.A. Pople, M. Head-Gordon, K. Raghavachari, J. Chem. Phys. 87, 5968 (1987)

    Article  CAS  Google Scholar 

  36. J.C. Corchado, Y.Y. Chuang, P. L. Fast et al., POLYRATE, version 9.3.1. (University of Minnesota, Minneapolis, 2005)

  37. B.C. Garrett, D.G. Truhlar, J. Chem. Phys. 70, 1593 (1979)

    Article  CAS  Google Scholar 

  38. D.H. Lu, T.N. Truong, V.S. Melissas et al., Comp. Phys. Comm. 71, 235 (1992)

    Article  CAS  Google Scholar 

  39. Y.P. Liu, G.C. Lynch, T.N. Truong, D.H. Lu, D.G. Truhlar, B.C. Garrett, J. Am. Chem. Soc. 115, 2408 (1993)

    Article  CAS  Google Scholar 

  40. D.G. Truhlar, B.C. Garrett, Annu. Rev. Phys. Chem. 35, 159 (1984)

    Article  CAS  Google Scholar 

  41. D.G. Truhlar, B.C. Garrett, J. Chem. Phys. 84, 365 (1987)

    Google Scholar 

  42. T.N. Truong, J. Chem. Phys. 100, 8014 (1994)

    Article  Google Scholar 

  43. A. Yu, Struc. Chem. (2013). doi:10.1007/s11224-013-0323-0

  44. A. Yu, H. Zhang, J. Mol. Model. 19, 4503 (2013). doi:10.1007/s00894-013-1960-3

    Article  CAS  Google Scholar 

  45. A. Yu, Can. J. Chem. (2013). doi:10.1139/cjc-2013-0197

  46. J. Yang, S. Zhang, Q. Li, Chem. J. Chine. Univ. 28, 1975 (2007)

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Institute of Theoretical Chemistry under specialized research fund for the Doctoral Program of Higher Education (20110061110018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angyang Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, A. Computational study on fluorine atom reaction with silane molecule (SiH4). J IRAN CHEM SOC 11, 593–598 (2014). https://doi.org/10.1007/s13738-013-0350-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-013-0350-1

Keywords

Navigation