Microwave-assisted method for preparation of Sb-doped ZnO nanostructures and their photocatalytic activity


Nanostructures of Sb-doped ZnO with 0.00, 0.03, 0.06, 0.10 and 0.15 mol fractions of Sb+3 ions were prepared by a one-pot method in water under microwave irradiation for 5 min. Powder X-ray diffraction studies display that the nanostructures are excellently crystallized in the form of Wurtzite hexagonal crystalline phase and doping Sb+3 ions does not change structure of ZnO. Moreover, size of the nanostructures decreases with increasing mole fraction of Sb+3 ions. Scanning electron microscopy and transmission electron microscopy images show that morphology and size of the nanostructures are changing with mole fraction of the dopant. In Fourier transform infrared spectra, intensity of the characteristic peak corresponding to Sb–O bond gradually increases with mole fraction of Sb+3 ions. UV–vis diffuse reflectance spectra of the nanostructures are similar to each other and they have a maximum of about 357 nm. Photocatalytic activity of the nanostructures was investigated by degradation of methylene blue under UV irradiation. For the nanostructures with 0.10 mol fraction of Sb+3 ions, the degradation rate constant increases nearly two times relative to pure ZnO. In addition, influence of various operational parameters on the degradation activity was investigated and the results were discussed.

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    S. Barth, F. Hernandez-Ramirez, J.D. Holmes, A. Romano-Rodriguez, Synthesis and applications of one-dimensional semiconductors. Prog. Mater. Sci. 55, 563–627 (2010)

    CAS  Article  Google Scholar 

  2. 2.

    X. Fang, T. Zhai, U.K. Gautam, L. Li, L. Wu, Y. Bando, D. Golberg, ZnS nanostructures: from synthesis to applications. Prog. Mater. Sci. 56, 175–287 (2011)

    CAS  Article  Google Scholar 

  3. 3.

    K. Nakata, A. Fujishima, TiO2 photocatalysis: design and applications. J. Photochem. Photobiol. C Photochem. Rev. 13, 169–189 (2012)

    CAS  Article  Google Scholar 

  4. 4.

    S.K. Arya, S. Saha, J.E. Ramirez-Vick, V. Gupta, S. Bhansali, S.P. Singh, Recent advances in ZnO nanostructures and thin films for biosensor applications: review. Anal. Chim. Acta. 737, 1–21 (2012)

    CAS  Article  Google Scholar 

  5. 5.

    Y. Jiang, Y. Liu, L. Yang, J. Liu, Y. Lin, Ionic liquid assisted sol–gel prepared Ce-doped ZnO. Adv. Mater. Res. 490, 3262–3265 (2012)

    Article  Google Scholar 

  6. 6.

    L. Zhang, Y.-J. Zhu, ZnO micro- and nano-structures: microwave-assisted solvothermal synthesis, morphology control and photocatalytic properties. Appl. Phys. A 97, 847–852 (2009)

    CAS  Article  Google Scholar 

  7. 7.

    R. Jalal, E.K. Goharshadi, M. Abareshi, M. Moosavi, A. Yousefi, P. Nancarrow, ZnO nanofluids: green synthesis, characterization, and antibacterial activity. Mater. Chem. Phys. 121, 198–201 (2010)

    CAS  Article  Google Scholar 

  8. 8.

    R. Kitture, S.L. Koppikar, R. Kaul-Ghanekar, S.N. Kale, Catalyst efficiency, photostability and reusability study of submicron sized ZnO particles in visible light for dye degradation. J. Phys. Chem. Solids 72, 60–66 (2011)

    CAS  Article  Google Scholar 

  9. 9.

    A.B. Djurišić, A.M.C. Ng, X.Y. Chen, ZnO nanostructures for optoelectronics: material properties and device applications. Prog. Quantum Electron. 34, 191–259 (2010)

    Article  Google Scholar 

  10. 10.

    L. Li, T. Zhai, Y. Bando, D. Golberg, Recent progress of one-dimensional ZnO nanostructured solar cells. Nano Energy 1, 91–106 (2012)

    CAS  Article  Google Scholar 

  11. 11.

    A. Moezzi, A.M.M. Donagh, M.B. Cortie, Zinc oxide particles: synthesis, properties and applications. Chem. Eng. J. 185–186, 1–22 (2012)

    Article  Google Scholar 

  12. 12.

    L. Schmidt-Mende, J.L. MacManus-Driscoll, ZnO-nanostructures, defects, and devices. Mater. Today 10, 40–48 (2007)

    CAS  Article  Google Scholar 

  13. 13.

    A. Wei, L. Pan, W. Huang, Recent progress in the ZnO nanostructure-based sensors. Mater. Sci. Eng. B 176, 1409–1421 (2011)

    CAS  Article  Google Scholar 

  14. 14.

    M. Fu, Y. Li, S. Wu, P. Lu, J. Liu, F. Dong, Sol–gel preparation and enhanced photocatalytic performance of Cu-doped ZnO nanoparticles. Appl. Surf. Sci. 258, 1587–1591 (2011)

    CAS  Article  Google Scholar 

  15. 15.

    S. Dong, K. Xu, J. Liu, H. Cui, Photocatalytic performance of ZnO: Fe array films under sunlight irradiation. Phys. B 406, 3609–3612 (2011)

    CAS  Article  Google Scholar 

  16. 16.

    H.H. Mohamed, D.W. Bahnemann, The role of electron transfer in photocatalysis: fact and fictions. Appl. Catal. B Environ. 128, 91–104 (2012)

    CAS  Article  Google Scholar 

  17. 17.

    X. Fang, J. Li, D. Zhao, B. Li, Z. Zhang, D. Shen, X. Wang, Z. Wei, Structural and photoluminescence properties of aligned Sb-doped ZnO nanocolumns synthesized by the hydrothermal method. Thin Solid Films 518, 5687–5689 (2010)

    CAS  Article  Google Scholar 

  18. 18.

    H. Benelmadjat, N. Touka, B. Harieche, B. Boudine, O. Halimi, M. Sebais, Study of structural and optical properties of Sb-doped ZnO thin films deposited by spin coating method. Opt. Mater. 32, 764–767 (2010)

    CAS  Article  Google Scholar 

  19. 19.

    I.A. Palani, D. Nakamura, K. Okazaki, M. Higashihata, T. Okada, Influence of Sb as a catalyst in the growth of ZnO nano wires and nano sheets using nanoparticle assisted pulsed laser deposition (NAPLD). Mater. Sci. Eng. B 176, 1526–1530 (2011)

    CAS  Article  Google Scholar 

  20. 20.

    C.H. Zhang, J.F. Su, B. Wang, D.M. Zhang, Y.S. Zhang, Photoluminescence of ZnO: Sb nanobelts fabricated by thermal evaporation method. J. Lumin. 131, 1817–1820 (2011)

    Article  Google Scholar 

  21. 21.

    I.A. Palani, K. Okazaki, D. Nakamura, K. Sakai, M. Higashihata, T. Okada, Influence of Sb in synthesize of ZnO nanowire using sandwich type substrate in carbothermal evaporation method. Appl. Surf. Sci. 258, 3611–3616 (2012)

    CAS  Article  Google Scholar 

  22. 22.

    S.B. Rana, A. Singh, N. Kaur, Structural and optoelectronic characterization of prepared and Sb-doped ZnO nanoparticles. J. Mater. Sci. Mater. Electron. 24, 44–52 (2013)

    CAS  Article  Google Scholar 

  23. 23.

    M. Abaker, A. Umar, S.A. Al-Sayari, G.N. Dar, M. Faisal, S.H. Kim, S.W. Hwang, Growth and photocatalytic properties of Sb-doped ZnO nanoneedles by hydrothermal process. AIP Conf. Proc. 1370, 121–127 (2011)

    CAS  Article  Google Scholar 

  24. 24.

    J.M. Wu, C.-W. Fang, L.-T. Lee, H–.H. Yeh, Y.-H. Lin, P.-H. Yeh, L.-N. Tsai, L.-J. Lin, Photoresponsive and ultraviolet visible-light range photocatalytic properties of ZnO: Sb nanowires. J. Electrochem. Soc. 158, 6–10 (2011)

    Article  Google Scholar 

  25. 25.

    B. Baruwati, V. Polshettiwar, R.S. Varma, Microwave-assisted synthesis of nanomaterials in aqueous media, in Aqueous microwave assisted chemistry, synthesis and catalysis, ed. by V. Polshettiwar, R.S. Varma (RSC, UK, 2010), pp. 176–209

    Google Scholar 

  26. 26.

    V. Polshettiwar, R.S. Varma, Fundamentals of aqueous microwave chemistry, in Aqueous microwave assisted chemistry, synthesis and catalysis, ed. by V. Polshettiwar, R.S. Varma (RSC, UK, 2010), pp. 1–8

    Google Scholar 

  27. 27.

    D.-M. Gu, Y.-Y. Chu, Z.-B. Wang, Z.-Z. Jiang, G.-P. Yin, Y. Liu, Methanol oxidation on Pt/CeO2–C electrocatalyst prepared by microwave-assisted ethylene glycol process. Appl. Catal. B Environ. 102, 9–18 (2011)

    CAS  Article  Google Scholar 

  28. 28.

    N. Uma Sangari, S. Chitra Devi, Synthesis and characterization of nano ZnO rods via microwave assisted chemical precipitation method. J. Solid State Chem. 197, 483–488 (2013)

    CAS  Article  Google Scholar 

  29. 29.

    W. Shi, Y. Yan, X. Yan, Microwave-assisted synthesis of nano-scale BiVO4 photocatalysts and their excellent visible-light-driven photocatalytic activity for the degradation of ciprofloxacin. Chem. Eng. J. 215–216, 740–746 (2013)

    Article  Google Scholar 

  30. 30.

    B.G. Mishra, G.R. Rao, Promoting effect of ceria on the physicochemical and catalytic properties of CeO2–ZnO composite oxide catalysts. J. Mol. Catal. A Chem. 243, 204–213 (2006)

    CAS  Article  Google Scholar 

  31. 31.

    B.D. Cullity, Elements of X-ray diffraction, 2nd edn. (Addision Wesley, London, 1978)

    Google Scholar 

  32. 32.

    Y. Ao, J. Xu, D. Fu, X. Shen, C. Yuan, Low temperature preparation of anatase TiO2-coated activated carbon. Colloids Surf. A Physicochem. Eng. Aspects 312, 125–130 (2008)

    CAS  Article  Google Scholar 

  33. 33.

    K.C. Barick, S. Singh, M. Aslam, D. Bahadur, Porosity and photocatalytic studies of transition metal doped ZnO nanoclusters. Microporous Mesoporous Mater. 134, 195–202 (2010)

    CAS  Article  Google Scholar 

  34. 34.

    Q. Shi, J. Zhang, D. Zhang, C. Wang, B. Yang, B. Zhang, W. Wang, Red luminescent and structural properties of Mg-doped ZnO phosphors prepared by sol–gel method. Mater. Sci. Eng. B 177, 689–693 (2012)

    CAS  Article  Google Scholar 

  35. 35.

    L.I. Berger, Semiconductor materials (CRC, Boca Raton, 1997)

    Google Scholar 

  36. 36.

    M. Barzegar, A. Habibi-Yangjeh, M. Behboudnia, Template-free preparation and characterization of nanocrystalline ZnO in aqueous solution of [EMIM][EtSO4] as a low-cost ionic liquid using ultrasonic irradiation and photocatalytic activity. J. Phys. Chem. Solids 70, 1353–1358 (2009)

    CAS  Article  Google Scholar 

  37. 37.

    A.H. Abdullah, N.H.M. Noor, I. Ramli, Effect of precipitation route on the properties of antimony trioxide. Mater. Chem. Phys. 11, 201–204 (2008)

    Article  Google Scholar 

  38. 38.

    M.A. Behnajady, N. Modirshahla, R. Hamzavi, Kinetic study on photocatalytic degradation of CI Acid Yellow 23 by ZnO photocatalyst. J. Hazard. Mater. B 133, 226–232 (2006)

    CAS  Article  Google Scholar 

  39. 39.

    E. Sanatgar-Delshade, A. Habibi-Yangjeh, M. Khodadadi-Moghaddam, Hydrothermal and low temperature preparation and characterization of ZnO nanoparticles supported on natural zeolite as a highly efficient photocatalyst. Monatsh. Chem. 142, 119–129 (2011)

    CAS  Article  Google Scholar 

  40. 40.

    N. Daneshvar, D. Salari, A.R. Khataee, The effect of operational parameters on the photocatalytic degradation of acid red 18 by ZnO. J. Photochem. Photobiol. A Chem 157, 111–116 (2003)

    CAS  Article  Google Scholar 

  41. 41.

    M.V. Shankar, S. Anandan, N. Venkatachalam, B. Arabindoo, V. Murugesan, Novel thin-film reactor for photocatalytic degradation of pesticides in an aqueous solution. J. Chem. Technol. Biotechnol. 79, 1279–1285 (2004)

    CAS  Article  Google Scholar 

  42. 42.

    N. Sobana, M. Swaminathan, The effect of operational parameters on the photocatalytic degradation of acid red 18 by ZnO. Sep. Purif. Technol. 56, 101–107 (2007)

    CAS  Article  Google Scholar 

  43. 43.

    A. Omidi, A. Habibi-Yangjeh, M. Pirhashemi, Application of ultrasonic irradiation method for preparation of ZnO nanostructures doped with Sb+3 ions as a highly efficient photocatalyst. Appl. Surf. Sci. 276, 468–475 (2013)

    CAS  Article  Google Scholar 

  44. 44.

    D. Robert, Photosensitization of TiO2 by MxOy and MxSy nanoparticles for heterogeneous photocatalysis applications. Catal. Today 122, 20–26 (2007)

    CAS  Article  Google Scholar 

  45. 45.

    M. Shang, W. Wang, S. Sun, L. Zhou, L. Zhang, Bi2WO6 nanocrystals with high photocatalytic activities under visible light. J. Phys. Chem. C 112, 10407–10411 (2008)

    CAS  Article  Google Scholar 

  46. 46.

    A.L. Stroyuk, A.I. Kryukov, S.Y. Kuchmii, V.D. Pokhodenko, Quantum size effects in semiconductor photocatalysis. Theor. Exp. Chem. 41, 207–228 (2005)

    CAS  Article  Google Scholar 

  47. 47.

    S. Sakthivel, B. Neppolian, M.V. Shankar, B. Arabindoo, M. Palanichamy, V. Murugesan, Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO. Sol. Energy Mater. Sol. Cells 77, 65–82 (2003)

    CAS  Article  Google Scholar 

Download references


The Authors wish to acknowledge University of Mohaghegh Ardabili, for financial support of this work.

Author information



Corresponding author

Correspondence to Aziz Habibi-Yangjeh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Omidi, A., Habibi-Yangjeh, A. Microwave-assisted method for preparation of Sb-doped ZnO nanostructures and their photocatalytic activity. J IRAN CHEM SOC 11, 457–465 (2014). https://doi.org/10.1007/s13738-013-0318-1

Download citation


  • Sb-doped ZnO
  • Microwave irradiation
  • Nanostructures
  • Methylene blue