Skip to main content
Log in

Theoretical investigation of azo dyes adsorbed on cellulose fibers: 1. Electronic and bonding structures

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Structural, bonding and electronic characteristics of complexes of anthraquinone and 1-arylazo-2-naphtol dyes and cellulose I β are studied using B3LYP density functional method with 6-31G** basis set based on the partially and fully optimized structures. Results reveal that for both partially and fully optimized complexes, there is a stabilizing attraction between dyes and cellulose surface. The hydrazone (Hy) tautomer in anionic state (Hy–SO3 ) shows the strongest interaction with the cellulose surface. Natural bond orbital (NBO) and atoms-in-molecules (AIM) analyses have been carried out to study the nature of azo dyes-cellulose bonds in detail. According to NBO analysis, a remarkable charge transfer occurs between the –SO3 and –SO3H functional groups of the dye and the cellulose surface which can be regarded as the main source of the large dye–cellulose interaction energy. AIM analysis confirms the existence of hydrogen and van der Waals bonds between the azo dyes and cellulose. Furthermore, a very good agreement is observed between the number of hydrogen bonding sites and dye–cellulose interaction energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Timofei, W. Schmidt, L. Kurunczi, Z. Simon, Dyes Pigm. 47, 5 (2000)

    Article  CAS  Google Scholar 

  2. L.C. Abbott, S.N. Batchelor, J.R. Lindsay Smith, J.N. Moore, J. Phys. Chem. A 113, 6091 (2009)

    Article  CAS  Google Scholar 

  3. S.K. Parida, S. Dash, S. Patel, B.K. Mishra, J. Colloid Interface Sci. 121, 77 (2006)

    Article  CAS  Google Scholar 

  4. M.M. Dávila Jiménez, M.P. Elizalde González, A.A. Peláez Cid, Colloid Surface A 254, 107 (2005)

    Article  Google Scholar 

  5. M.S. Barid, J.D. Hamlin, A. O’Sullivan, A. Whiting, Dyes Pigm. 76, 406 (2008)

    Article  Google Scholar 

  6. A.J. Pielesz, Appl. Polym. Sci. 104, 758 (2007)

    Article  CAS  Google Scholar 

  7. A. Pielesz, A. Wesełucha Birczyńska, H.S. Freeman, A. Włochowicz, Cellulose 12, 497 (2005)

    Article  CAS  Google Scholar 

  8. X. Qian, S. Ding, M.R. Nimlos, D.K. Johnson, M.E. Himmel, Macromolecules 38, 10580 (2005)

    Article  CAS  Google Scholar 

  9. Y. Nishiyama, J. Sugiyama, H. Chanzy, P. Langan, J. Am. Chem. Soc. 125, 14300 (2003)

    Article  CAS  Google Scholar 

  10. A. Michalkova, J.J. Szymczak, J. Leszczynski, Struct. Chem. 16, 325 (2005)

    Article  CAS  Google Scholar 

  11. J. Bird, N. Brough, S. Dixon, S.N. Batchelor, J. Phys. Chem. B 110, 19557 (2006)

    Article  CAS  Google Scholar 

  12. D. Jacquemin, V. Wathelet, J. Preat, E.A. Perpète, Spectrochim. Acta A 67, 334 (2007)

    Article  Google Scholar 

  13. L.C. Abbott, S.N. Batchelor, J. Oakes, B.C. Gilbert, A.C. Whitwood, J.R. Lindsay Smith, J.N. Moore, J. Phys. Chem. A 109, 2894 (2005)

    Article  CAS  Google Scholar 

  14. E.A. Perpète, V. Wathelet, J. Preat, C. Lambert, D. Jacquemin, J. Chem. Theory Comput. 2, 434 (2006)

    Article  Google Scholar 

  15. Y. Nishiyama, P. Langan, H. Chanzy, J. Am. Chem. Soc. 124, 9074 (2002)

    Article  CAS  Google Scholar 

  16. H.B. Schlegel, M.W. Gill, B.G. Johnson, M.A. Robb, J.R. Cheeseman, T. Keith, G.A. Petersson, J.A. Montgomery, K. Raghavachari, M.A. Al-Laham, V.G. Zakrzewski, J.V. Oritz, J.B. Foresman, J. Cioslowski, B.B. Stefanov, A. Nanayakkara, M. Challacombe, C.Y. Peng, P.Y. Ayala, W. Chen, M.W. Wong, J.L. Andres, E.S. Replogle, R. Gomperts, R.L. Martin, D.J. Fox, J.S. Binkley, D.J. Defress, J. Baker, J.P. Stewart, M. Head-Gordon, C. Gonzalez, M.J. Frisch, G.W. Trucks, GAUSSIAN 98, A connected system of programs for performing a variety of semi-empirical and ab initio molecular orbital (MO) calculations (Gaussian Inc, Pittsburgh, 1998)

    Google Scholar 

  17. R.F.W. Bader, Atoms in molecules: A quantum theory (Clarendon Press, Oxford, 1990)

    Google Scholar 

  18. R.F.W. Bader, Chem. Rev. 91, 893 (1991)

    Article  CAS  Google Scholar 

  19. Bader, R.F.W. (1998) In encyclopedia of computational chemistryeds. In Schleyer, Pv.R., Allinger, N.L.T., Gasteiger Clark, J., Kollman, P.A., Schaefer III, H.F., Schreiner, P.R. (eds.) pp. 64–86, Wiley, Chichester (1998)

  20. AIM 2000, Version 2, www.aim2000.de. Bielefeld, Germany, (2002)

  21. http://webook.nist.gov/chemistry/

  22. Zanjanchi, F., Hadipour, N.L., Sabzyan, H., Beheshtian, J.: Submitted Article (2012)

  23. P. Gilli, V. Bertolasi, L. Pretto, L. Antonov, G. Gilli, J. Am. Chem. Soc. 127, 4943 (2005)

    Article  CAS  Google Scholar 

  24. A.C. Oliveri, R.B. Wilson, L.C. Paul, D.Y. Curtin, J. Am. Chem. Soc. 111, 5525 (1989)

    Article  Google Scholar 

  25. W.M.F. Fabian, L. Antonov, D. Nedeltcheva, F.S. Kamounah, P.J. Taylor, J. Phys. Chem. A 108, 7603 (2004)

    Article  CAS  Google Scholar 

  26. F.A. Batzias, D.K. Sidiras, J. Hazard. Mater. 141, 668 (2007)

    Article  CAS  Google Scholar 

  27. A. Sugane, A. Watanabe, Y. Okada, Z. Morita, Dyes Pigm. 50, 223 (2001)

    Article  CAS  Google Scholar 

  28. W.H. Ojala, E.A. Sudbeck, L.K. Lu, T.I. Richardson, R.E. Lovrien, W.B. Gleason, J. Am. Chem. Soc. 118, 2131 (1996)

    Article  CAS  Google Scholar 

  29. F. Weinhold, C.R. Landis, Chem. Educ. Res. Pract. 2, 91 (2001)

    Article  CAS  Google Scholar 

  30. F. Weinhold, C.R. Landis, Valency and bonding: A natural bond orbital donnor-acceptor perspective (Cambridge University Press, New York, 2005)

    Book  Google Scholar 

  31. H.S. Biswal, P.R. Shirhatti, S. Wategaonkar, J. Phys, Chem. A 113, 5633 (2009)

    CAS  Google Scholar 

  32. O.S. Sukhanov, O.V. Shishkin, L. Gorb, J. Leszczynski, Sruct. Chem. 19, 171 (2008)

    Article  CAS  Google Scholar 

  33. H. Raissi, M. Bakavol, I. Jimenez-Fabian, J. Tajabadi, E. Mdoshfeghi, A.F. Jalbout, J. Mol. Struct. Theochem 847, 47 (2007)

    Article  CAS  Google Scholar 

  34. C.F. Matta, R.J. Boyed, The quantum theory of atoms in molecules (Wiley-VCH Verlag Gmbh & Co. KGaA, Weinheim, 2007)

    Book  Google Scholar 

  35. U. Koch, P.L.A. Popelier, J. Phys. Chem. 99, 9747 (1995)

    Article  CAS  Google Scholar 

  36. P.L.A. Popelier, J. Phys. Chem. A 102, 1873 (1998)

    Article  CAS  Google Scholar 

  37. P. Popelier, Atoms in molecules: An introduction (Prentice Hall, Englewood Cliffs, 2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasser L. Hadipour.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1646 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zanjanchi, F., Hadipour, N.L., Sabzyan, H. et al. Theoretical investigation of azo dyes adsorbed on cellulose fibers: 1. Electronic and bonding structures. J IRAN CHEM SOC 10, 985–999 (2013). https://doi.org/10.1007/s13738-013-0236-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-013-0236-2

Keywords

Navigation