Journal of the Iranian Chemical Society

, Volume 10, Issue 4, pp 659–667

Computational prediction of temperature dependence of 13C NMR lineshapes of planar molecules in structure I clathrate hydrates

  • Hossein Mohammadi-Manesh
  • Saman Alavi
  • Tom K. Woo
  • Bijan Najafi
Original Paper
  • 133 Downloads

Abstract

We use the molecular dynamics-based method to predict the solid-state 13C NMR lineshape of a planar molecule in a nonspherical cage. Unlike linear molecules, three components of the chemical shielding tensor of a planar molecule are different which gives rise to a different lineshape and temperature dependence in the 13C NMR spectrum. We study the planar ethylene molecule in the oblate large cages of the structure I (sI) clathrate hydrate and extract the lineshapes from the angular distribution and dynamics at four temperatures (70, 150, 200, and 250 K) in the stability range of the hydrate. At low temperature, the C2H4 molecules have limited range of motion in the cages, but as the temperature is raised, they first gain greater rotational freedom about the molecular C=C axis, and then in other directions. These data allow for the calculation of the 13C NMR lineshapes of the C2H4 guests at each temperature.

Graphical abstract

Keywords

Clathrate hydrates NMR lineshapes Host–guest systems Molecular dynamics simulations Inclusion compounds Planar molecules 

Supplementary material

13738_2012_198_MOESM1_ESM.doc (1.2 mb)
Supplementary material 1 (DOC 1253 kb)

References

  1. 1.
    E.D. Sloan, Nature 426, 353 (2003)CrossRefGoogle Scholar
  2. 2.
    G.A. Jeffrey, in Inclusion Compounds, vol. 1, eds. by J.L. Atwood, J.E.D. Davies, D.D. MacNicol (Academic Press, New York, 1984)Google Scholar
  3. 3.
    S. Alavi, K. Udachin, C.I. Ratcliffe, J.A. Ripmeester, Supramol. Chem., in pressGoogle Scholar
  4. 4.
    H. Lee, J.W. Lee, D.Y. Kim, J. Park, Y.T. Seo, H. Zeng, I.L. Moudrakovski, C.I. Ratcliffe, J.A. Ripmeester, Nature 434, 743 (2005)CrossRefGoogle Scholar
  5. 5.
    Y. Park, D.Y. Kim, J.W. Lee, D.G. Huh, K.P. Park, J. Lee, H. Proc, Nalt. Acad. Sci. USA 103, 12690 (2006)CrossRefGoogle Scholar
  6. 6.
    G.D. Enright, K.A. Udachin, I.L. Moudrakovski, J.A. Ripmeester, J. Am. Chem. Soc. 125, 9896 (2003)CrossRefGoogle Scholar
  7. 7.
    L.J. Florusse, C.J. Peters, J. Schoonman, K.C. Hester, C.A. Koh, S.F. Dec, K.N. Marsh, E.D. Sloan, Science 306, 469 (2004)CrossRefGoogle Scholar
  8. 8.
    L. Senadheera, M.S. Conradi, J. Phys. Chem. B 111, 12097 (2007)CrossRefGoogle Scholar
  9. 9.
    T. Ida, M. Mizuno, K. Endo, J. Comput. Chem. 23, 1071 (2002)CrossRefGoogle Scholar
  10. 10.
    J.A. Ripmeester, C.I. Ratcliffe Energ, Fuel 12, 197 (1998)Google Scholar
  11. 11.
    Y.T. Seo, H. Lee, J. Phys. Chem. B 108, 530 (2004)CrossRefGoogle Scholar
  12. 12.
    D.Y. Kim, H. Lee, J. Am. Chem. Soc. 127, 9996 (2005)CrossRefGoogle Scholar
  13. 13.
    S.H. Yeon, J. Seol, H. Lee, J. Am. Chem. Soc. 128, 12388 (2006)CrossRefGoogle Scholar
  14. 14.
    M.J. Potrzebowski, S. Kazmierski, Top. Curr. Chem. 246, 91 (2005)CrossRefGoogle Scholar
  15. 15.
    J.A. Ripmeester, C.I. Ratcliffe, G. Enright, E. Brouwer, Acta Crystallogr. B 51, 13 (1995)CrossRefGoogle Scholar
  16. 16.
    P.S. Sidhu, J. Bell, G.H. Penner, K.R. Jeffrey, Can. J. Chem. 74, 1784 (1996)CrossRefGoogle Scholar
  17. 17.
    R. Caciuffo, R. Galeazzi, A.J. Horsewill, A. Ikram, F. Ugozzoli, Phys. Rev. B 60, 11867 (1999)CrossRefGoogle Scholar
  18. 18.
    K.A. Udachin, G.D. Enright, C.I. Ratcliffe, J.A. Ripmeester, ChemPhysChem 4, 1059 (2003)CrossRefGoogle Scholar
  19. 19.
    D.H. Brouwer, S. Alavi, J.A. Ripmeester, Phys. Chem. Chem. Phys. 9, 1093 (2007)CrossRefGoogle Scholar
  20. 20.
    S. Alavi, P. Dornan, T.K. Woo, ChemPhysChem 9, 911 (2008)CrossRefGoogle Scholar
  21. 21.
    H. Mohammadi-Manesh, S. Alavi, T.K. Woo, M. Ashrafizaadeh, B. Najafi, Phys. Chem. Chem. Phys. 11, 8821 (2009)CrossRefGoogle Scholar
  22. 22.
    H. Mohammadi-Manesh, S. Alavi, T.K. Woo, B. Najafi, Phys. Chem. Chem. Phys. 13, 2367 (2011)CrossRefGoogle Scholar
  23. 23.
    A.J. Beeler, A.M. Orendt, D.M. Grant, P.W. Cutts, J. Michl, K.W. Zilm, J.W. Downing, J.C. Facelli, M.S. Schindler, W.J. Kutzelnigg, J. Am. Chem. Soc. 106, 7672 (1984)CrossRefGoogle Scholar
  24. 24.
    J. Jokisaari, P. Lazzeretti, P. Pyykko, Chem. Phys. 123, 339 (1988)CrossRefGoogle Scholar
  25. 25.
    D.W. Davidson, C.I. Ratcliffe, J.A. Ripmeester, J Inclus Phenom. 2, 239 (1984)CrossRefGoogle Scholar
  26. 26.
    G.B. Arfken, H.J. Weber, Mathematical methods for physicists, 5th edn. (Harcourt/Academic Press, San Diego, 2001)Google Scholar
  27. 27.
    M.J. Duer, Introduction to solid-state NMR spectroscopy (Blackwell, Oxford, 2004)Google Scholar
  28. 28.
    C.I. Ratcliffe, J. Phys. Chem. 91, 6464 (1987)CrossRefGoogle Scholar
  29. 29.
    A.C. Olivieri, Conc. Magn. Res. 8, 279 (1996)CrossRefGoogle Scholar
  30. 30.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision C.02; Gaussian, Inc. (Wallingford, CT, 2004)Google Scholar
  31. 31.
    R. Ditchfield, Mol. Phys. 27, 789 (1974)CrossRefGoogle Scholar
  32. 32.
    K. Wolinski, J.F. Hinton, P. Pulay, J. Am. Chem. Soc. 112, 8251 (1990)CrossRefGoogle Scholar
  33. 33.
    G. Rauhut, S. Puyear, K. Wolinski, P. Pulay, J. Phys. Chem. 100, 6310 (1996)CrossRefGoogle Scholar
  34. 34.
    J.R. Cheeseman, G.W. Trucks, T.A. Keith, M.J. Frisch, J. Chem. Phys. 104, 5497 (1996)CrossRefGoogle Scholar
  35. 35.
    H. Berendsen, J. Grigera, T.J. Straatsma, J. Phys. Chem. 91, 6269 (1987)CrossRefGoogle Scholar
  36. 36.
    (a) D.A. Case, T.A. Darden, T.E. Cheatham, III, C.L. Simmerling, J. Wang, R.E. Duke, R. Luo, M. Crowley, R.C.Walker,W. Zhang, K.M. Merz, B.Wang, S. Hayik, A. Roitberg, G. Seabra, I. Kolossvary, K.F. Wong, F. Paesani, J. Vanicek, X.Wu, S.R. Brozell, T. Steinbrecher, H. Gohlke, L. Yang, C. Tan, J. Mongan, V. Hornak, G. Cui, D.H. Mathews, M.G. Seetin, C. Sagui, V. Babin, and P.A. Kollman, AMBER 10 (University of California, San Francisco, 2008). (b) J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman, D.A. Case, J. Comput. Chem. 25, 1157 (2004)Google Scholar
  37. 37.
    S. Nosé, J. Chem. Phys. 81, 511 (1984)CrossRefGoogle Scholar
  38. 38.
    S. Melchionna, G. Ciccotti, B.L. Holian, Mol. Phys. 78, 533 (1993)CrossRefGoogle Scholar
  39. 39.
    T.R. Forester, W. Smith, DL_POLY 2.17 (CCLRC: Daresbury Laboratory, 1995)Google Scholar
  40. 40.
    D. Frenkel, B. Smit, Understanding molecular simulation: from algorithms to applications, 2nd edn. (Academic Press, San Diego, 2002)Google Scholar
  41. 41.
    M.P. Allen, D.J. Tildesley, Computer simulation of liquids (Oxford University Press, Oxford, 1987)Google Scholar
  42. 42.
    K.W. Zilm, D.M. Grant, J. Am. Chem. Soc. 103, 2913 (1981)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2012

Authors and Affiliations

  • Hossein Mohammadi-Manesh
    • 1
  • Saman Alavi
    • 2
  • Tom K. Woo
    • 2
  • Bijan Najafi
    • 3
  1. 1.Department of ChemistryYazd UniversityYazdIran
  2. 2.Department of Chemistry, Center for Catalysis Research and InnovationUniversity of OttawaOttawaCanada
  3. 3.Department of ChemistryIsfahan University of TechnologyIsfahanIran

Personalised recommendations